Myocardial scar and left ventricular ejection fraction classification for electrocardiography image using multi-task deep learning

dc.contributor.authorBoribalburephan A.
dc.contributor.authorTreewaree S.
dc.contributor.authorTantisiriwat N.
dc.contributor.authorYindeengam A.
dc.contributor.authorAchakulvisut T.
dc.contributor.authorKrittayaphong R.
dc.contributor.correspondenceBoribalburephan A.
dc.contributor.otherMahidol University
dc.date.accessioned2024-04-05T18:15:18Z
dc.date.available2024-04-05T18:15:18Z
dc.date.issued2024-12-01
dc.description.abstractMyocardial scar (MS) and left ventricular ejection fraction (LVEF) are vital cardiovascular parameters, conventionally determined using cardiac magnetic resonance (CMR). However, given the high cost and limited availability of CMR in resource-constrained settings, electrocardiograms (ECGs) are a cost-effective alternative. We developed computer vision-based multi-task deep learning models to analyze 12-lead ECG 2D images, predicting MS and LVEF < 50%. Our dataset comprises 14,052 ECGs with clinical features, utilizing ground truth labels from CMR. Our top-performing model achieved AUC values of 0.838 (95% CI 0.812–0.862) for MS and 0.939 (95% CI 0.921–0.954) for LVEF < 50% classification, outperforming cardiologists. Moreover, MS predictions in a prevalence-specific test dataset recorded an AUC of 0.812 (95% CI 0.810–0.814). Extracted 1D signals from ECG images yielded inferior performance, compared to the 2D approach. In conclusion, our results demonstrate the potential of computer-based MS and LVEF < 50% classification from ECG scan images in clinical screening offering a cost-effective alternative to CMR.
dc.identifier.citationScientific Reports Vol.14 No.1 (2024)
dc.identifier.doi10.1038/s41598-024-58131-6
dc.identifier.eissn20452322
dc.identifier.scopus2-s2.0-85189033624
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/97888
dc.rights.holderSCOPUS
dc.subjectMultidisciplinary
dc.titleMyocardial scar and left ventricular ejection fraction classification for electrocardiography image using multi-task deep learning
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85189033624&origin=inward
oaire.citation.issue1
oaire.citation.titleScientific Reports
oaire.citation.volume14
oairecerif.author.affiliationSiriraj Hospital
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationLooloo Technology

Files

Collections