Remarks on the Boundedness of Poles of Padé-orthogonal and Padé-Faber approximants

dc.contributor.authorSupuang A.
dc.contributor.authorBosuwan N.
dc.contributor.correspondenceSupuang A.
dc.contributor.otherMahidol University
dc.date.accessioned2024-02-15T18:18:19Z
dc.date.available2024-02-15T18:18:19Z
dc.date.issued2023-09-30
dc.description.abstractGiven a function F holomorphic on a neighborhood of some compact subset of the complex plane, we prove that if the zeros of the denominators of (n, mn) orthogonal Padé and Padé-Faber approximants remain uniformly bounded on a sequence of indices {(n, mn)} satisfying sup{mn: n Ԑ N} < ∞. then either F is a polynomial or F has a singularity in the complex plane. In this paper, we relax a condition on the indices mn in results from [N. Bosuwan, On the boundedness of poles of generalized Padé approximants, Adv. Differ. Equ 2019 (137) (2019) https://doi.org/10.1186/sl36fi2-01fl-2081-fl].
dc.identifier.citationThai Journal of Mathematics Vol.2023 No.Special Issue (2023) , 147-159
dc.identifier.issn16860209
dc.identifier.scopus2-s2.0-85184265117
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/97191
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.titleRemarks on the Boundedness of Poles of Padé-orthogonal and Padé-Faber approximants
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85184265117&origin=inward
oaire.citation.endPage159
oaire.citation.issueSpecial Issue
oaire.citation.startPage147
oaire.citation.titleThai Journal of Mathematics
oaire.citation.volume2023
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationMinistry of Higher Education, Science, Research and Innovation

Files

Collections