Remarks on the Boundedness of Poles of Padé-orthogonal and Padé-Faber approximants
dc.contributor.author | Supuang A. | |
dc.contributor.author | Bosuwan N. | |
dc.contributor.correspondence | Supuang A. | |
dc.contributor.other | Mahidol University | |
dc.date.accessioned | 2024-02-15T18:18:19Z | |
dc.date.available | 2024-02-15T18:18:19Z | |
dc.date.issued | 2023-09-30 | |
dc.description.abstract | Given a function F holomorphic on a neighborhood of some compact subset of the complex plane, we prove that if the zeros of the denominators of (n, mn) orthogonal Padé and Padé-Faber approximants remain uniformly bounded on a sequence of indices {(n, mn)} satisfying sup{mn: n Ԑ N} < ∞. then either F is a polynomial or F has a singularity in the complex plane. In this paper, we relax a condition on the indices mn in results from [N. Bosuwan, On the boundedness of poles of generalized Padé approximants, Adv. Differ. Equ 2019 (137) (2019) https://doi.org/10.1186/sl36fi2-01fl-2081-fl]. | |
dc.identifier.citation | Thai Journal of Mathematics Vol.2023 No.Special Issue (2023) , 147-159 | |
dc.identifier.issn | 16860209 | |
dc.identifier.scopus | 2-s2.0-85184265117 | |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/97191 | |
dc.rights.holder | SCOPUS | |
dc.subject | Mathematics | |
dc.title | Remarks on the Boundedness of Poles of Padé-orthogonal and Padé-Faber approximants | |
dc.type | Article | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85184265117&origin=inward | |
oaire.citation.endPage | 159 | |
oaire.citation.issue | Special Issue | |
oaire.citation.startPage | 147 | |
oaire.citation.title | Thai Journal of Mathematics | |
oaire.citation.volume | 2023 | |
oairecerif.author.affiliation | Mahidol University | |
oairecerif.author.affiliation | Ministry of Higher Education, Science, Research and Innovation |