Projecting malaria elimination in Thailand using Bayesian hierarchical spatiotemporal models

dc.contributor.authorRotejanaprasert C.
dc.contributor.authorLawpoolsri S.
dc.contributor.authorSa-angchai P.
dc.contributor.authorKhamsiriwatchara A.
dc.contributor.authorPadungtod C.
dc.contributor.authorTipmontree R.
dc.contributor.authorMenezes L.
dc.contributor.authorSattabongkot J.
dc.contributor.authorCui L.
dc.contributor.authorKaewkungwal J.
dc.contributor.otherMahidol University
dc.date.accessioned2023-05-29T17:20:32Z
dc.date.available2023-05-29T17:20:32Z
dc.date.issued2023-05-13
dc.description.abstractThailand has set a goal of eliminating malaria by 2024 in its national strategic plan. In this study, we used the Thailand malaria surveillance database to develop hierarchical spatiotemporal models to analyze retrospective patterns and predict Plasmodium falciparum and Plasmodium vivax malaria incidences at the provincial level. We first describe the available data, explain the hierarchical spatiotemporal framework underlying the analysis, and then display the results of fitting various space-time formulations to the malaria data with the different model selection metrics. The Bayesian model selection process assessed the sensitivity of different specifications to obtain the optimal models. To assess whether malaria could be eliminated by 2024 per Thailand's National Malaria Elimination Strategy, 2017-2026, we used the best-fitted model to project the estimated cases for 2022-2028. The study results based on the models revealed different predicted estimates between both species. The model for P. falciparum suggested that zero P. falciparum cases might be possible by 2024, in contrast to the model for P. vivax, wherein zero P. vivax cases might not be reached. Innovative approaches in the P. vivax-specific control and elimination plans must be implemented to reach zero P. vivax and consequently declare Thailand as a malaria-free country.
dc.identifier.citationScientific reports Vol.13 No.1 (2023) , 7799
dc.identifier.doi10.1038/s41598-023-35007-9
dc.identifier.eissn20452322
dc.identifier.pmid37179429
dc.identifier.scopus2-s2.0-85159738953
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/82875
dc.rights.holderSCOPUS
dc.subjectMultidisciplinary
dc.titleProjecting malaria elimination in Thailand using Bayesian hierarchical spatiotemporal models
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85159738953&origin=inward
oaire.citation.issue1
oaire.citation.titleScientific reports
oaire.citation.volume13
oairecerif.author.affiliationFaculty of Tropical Medicine, Mahidol University
oairecerif.author.affiliationThailand Ministry of Public Health
oairecerif.author.affiliationMorsani College of Medicine

Files

Collections