Exploring 8<sup>x</sup> + n<sup>y</sup> = z<sup>2</sup> through Associated Elliptic Curves

dc.contributor.authorPanraksa C.
dc.contributor.correspondencePanraksa C.
dc.contributor.otherMahidol University
dc.date.accessioned2025-01-23T18:32:17Z
dc.date.available2025-01-23T18:32:17Z
dc.date.issued2025-01-01
dc.description.abstractThis paper investigates the exponential Diophantine equation 8x+ ny = z2, where n > 1 is an odd positive integer. We characterize solutions for the base cases (x = 0 or y = 0) and describe, based on implications of Bennett and Skinner’s theorem, that no solutions exist for y > 2 in certain cases. For y = 1 and y = 2, we employ elliptic curve methods, focusing on the equations z2 = t3+n and z2 = t3+n2, where t = 2x. This work generalizes known results for specific cases and provides insights into this class of Diophantine equations and their associated elliptic curves.
dc.identifier.citationInternational Journal of Mathematics and Computer Science Vol.20 No.1 (2025) , 247-254
dc.identifier.doi10.69793/ijmcs/01.2025/chatchawan
dc.identifier.eissn18140432
dc.identifier.issn18140424
dc.identifier.scopus2-s2.0-85204962387
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/102815
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.subjectComputer Science
dc.titleExploring 8<sup>x</sup> + n<sup>y</sup> = z<sup>2</sup> through Associated Elliptic Curves
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85204962387&origin=inward
oaire.citation.endPage254
oaire.citation.issue1
oaire.citation.startPage247
oaire.citation.titleInternational Journal of Mathematics and Computer Science
oaire.citation.volume20
oairecerif.author.affiliationMahidol University

Files

Collections