Exploring 8<sup>x</sup> + n<sup>y</sup> = z<sup>2</sup> through Associated Elliptic Curves
dc.contributor.author | Panraksa C. | |
dc.contributor.correspondence | Panraksa C. | |
dc.contributor.other | Mahidol University | |
dc.date.accessioned | 2025-01-23T18:32:17Z | |
dc.date.available | 2025-01-23T18:32:17Z | |
dc.date.issued | 2025-01-01 | |
dc.description.abstract | This paper investigates the exponential Diophantine equation 8x+ ny = z2, where n > 1 is an odd positive integer. We characterize solutions for the base cases (x = 0 or y = 0) and describe, based on implications of Bennett and Skinner’s theorem, that no solutions exist for y > 2 in certain cases. For y = 1 and y = 2, we employ elliptic curve methods, focusing on the equations z2 = t3+n and z2 = t3+n2, where t = 2x. This work generalizes known results for specific cases and provides insights into this class of Diophantine equations and their associated elliptic curves. | |
dc.identifier.citation | International Journal of Mathematics and Computer Science Vol.20 No.1 (2025) , 247-254 | |
dc.identifier.doi | 10.69793/ijmcs/01.2025/chatchawan | |
dc.identifier.eissn | 18140432 | |
dc.identifier.issn | 18140424 | |
dc.identifier.scopus | 2-s2.0-85204962387 | |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/102815 | |
dc.rights.holder | SCOPUS | |
dc.subject | Mathematics | |
dc.subject | Computer Science | |
dc.title | Exploring 8<sup>x</sup> + n<sup>y</sup> = z<sup>2</sup> through Associated Elliptic Curves | |
dc.type | Article | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85204962387&origin=inward | |
oaire.citation.endPage | 254 | |
oaire.citation.issue | 1 | |
oaire.citation.startPage | 247 | |
oaire.citation.title | International Journal of Mathematics and Computer Science | |
oaire.citation.volume | 20 | |
oairecerif.author.affiliation | Mahidol University |