Sulconazole-Loaded Solid Lipid Nanoparticles for Enhanced Antifungal Activity: In Vitro and In Vivo Approach

dc.contributor.authorSamee A.
dc.contributor.authorUsman F.
dc.contributor.authorWani T.A.
dc.contributor.authorFarooq M.
dc.contributor.authorShah H.S.
dc.contributor.authorJaved I.
dc.contributor.authorAhmad H.
dc.contributor.authorKhan R.
dc.contributor.authorZargar S.
dc.contributor.authorKausar S.
dc.contributor.otherMahidol University
dc.date.accessioned2023-12-08T18:01:07Z
dc.date.available2023-12-08T18:01:07Z
dc.date.issued2023-11-09
dc.description.abstractSolid lipid nanoparticles (SLNs) have the advantages of a cell-specific delivery and sustained release of hydrophobic drugs that can be exploited against infectious diseases. The topical delivery of hydrophobic drugs needs pharmaceutical strategies to enhance drug permeation, which is a challenge faced by conventional formulations containing a drug suspended in gel, creams or ointments. We report the fabrication and optimization of SLNs with sulconazole (SCZ) as a model hydrophobic drug and then a formulation of an SLN-based topical gel against fungal infections. The SLNs were optimized through excipients of glyceryl monostearate and Phospholipon® 90 H as lipids and tween 20 as a surfactant for its size, drug entrapment and sustained release and resistance against aggregation. The SCZ-SLNs were physically characterized for their particle size (89.81 ± 2.64), polydispersity index (0.311 ± 0.07), zeta potential (-26.98 ± 1.19) and encapsulation efficiency (86.52 ± 0.53). The SCZ-SLNs showed sustained release of 85.29% drug at the 12 h timepoint. The TEM results demonstrated spherical morphology, while DSC, XRD and FTIR showed the compatibility of the drug inside SLNs. SCZ-SLNs were incorporated into a gel using carbopol and were further optimized for their rheological behavior, pH, homogeneity and spreadability on the skin. The antifungal activity against Candida albicans and Trichophyton rubrum was increased in comparison to a SCZ carbopol-based gel. In vivo antifungal activity in rabbits presented faster healing of skin fungal infections. The histopathological examination of the treated skin from rabbits presented restoration of the dermal architecture. In summary, the approach of formulating SLNs into a topical gel presented an advantageous drug delivery system against mycosis.
dc.identifier.citationMolecules (Basel, Switzerland) Vol.28 No.22 (2023)
dc.identifier.doi10.3390/molecules28227508
dc.identifier.eissn14203049
dc.identifier.pmid38005230
dc.identifier.scopus2-s2.0-85177733963
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/91295
dc.rights.holderSCOPUS
dc.subjectBiochemistry, Genetics and Molecular Biology
dc.titleSulconazole-Loaded Solid Lipid Nanoparticles for Enhanced Antifungal Activity: In Vitro and In Vivo Approach
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85177733963&origin=inward
oaire.citation.issue22
oaire.citation.titleMolecules (Basel, Switzerland)
oaire.citation.volume28
oairecerif.author.affiliationUniversity of Central Punjab
oairecerif.author.affiliationUniversity of Sargodha
oairecerif.author.affiliationUniversity of Veterinary and Animal Sciences, Lahore
oairecerif.author.affiliationBahauddin Zakariya University
oairecerif.author.affiliationUniversity of South Australia
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationCollege of Sciences
oairecerif.author.affiliationCollege of Pharmacy

Files

Collections