Machine learning improves the prediction of significant fibrosis in Asian patients with metabolic dysfunction-associated steatotic liver disease – The Gut and Obesity in Asia (GO-ASIA) Study

dc.contributor.authorVerma N.
dc.contributor.authorDuseja A.
dc.contributor.authorMehta M.
dc.contributor.authorDe A.
dc.contributor.authorLin H.
dc.contributor.authorWong V.W.S.
dc.contributor.authorWong G.L.H.
dc.contributor.authorRajaram R.B.
dc.contributor.authorChan W.K.
dc.contributor.authorMahadeva S.
dc.contributor.authorZheng M.H.
dc.contributor.authorLiu W.Y.
dc.contributor.authorTreeprasertsuk S.
dc.contributor.authorPrasoppokakorn T.
dc.contributor.authorKakizaki S.
dc.contributor.authorSeki Y.
dc.contributor.authorKasama K.
dc.contributor.authorCharatcharoenwitthaya P.
dc.contributor.authorSathirawich P.
dc.contributor.authorKulkarni A.
dc.contributor.authorPurnomo H.D.
dc.contributor.authorKamani L.
dc.contributor.authorLee Y.Y.
dc.contributor.authorWong M.S.
dc.contributor.authorTan E.X.X.
dc.contributor.authorYoung D.Y.
dc.contributor.correspondenceVerma N.
dc.contributor.otherMahidol University
dc.date.accessioned2024-02-15T18:13:47Z
dc.date.available2024-02-15T18:13:47Z
dc.date.issued2024-01-01
dc.description.abstractBackground: The precise estimation of cases with significant fibrosis (SF) is an unmet goal in non-alcoholic fatty liver disease (NAFLD/MASLD). Aims: We evaluated the performance of machine learning (ML) and non-patented scores for ruling out SF among NAFLD/MASLD patients. Methods: Twenty-one ML models were trained (N = 1153), tested (N = 283), and validated (N = 220) on clinical and biochemical parameters of histologically-proven NAFLD/MASLD patients (N = 1656) collected across 14 centres in 8 Asian countries. Their performance for detecting histological-SF (≥F2fibrosis) were evaluated with APRI, FIB4, NFS, BARD, and SAFE (NPV/F1-score as model-selection criteria). Results: Patients aged 47 years (median), 54.6% males, 73.7% with metabolic syndrome, and 32.9% with histological-SF were included in the study. Patients with SFvs.no-SF had higher age, aminotransferases, fasting plasma glucose, metabolic syndrome, uncontrolled diabetes, and NAFLD activity score (p < 0.001, each). ML models showed 7%–12% better discrimination than FIB-4 to detect SF. Optimised random forest (RF) yielded best NPV/F1 in overall set (0.947/0.754), test set (0.798/0.588) and validation set (0.852/0.559), as compared to FIB4 in overall set (0.744/0.499), test set (0.722/0.456), and validation set (0.806/0.507). Compared to FIB-4, RF could pick 10 times more patients with SF, reduce unnecessary referrals by 28%, and prevent missed referrals by 78%. Age, AST, ALT fasting plasma glucose, and platelet count were top features determining the SF. Sequential use of SAFE < 140 and FIB4 < 1.2 (when SAFE > 140) was next best in ruling out SF (NPV of 0.757, 0.724 and 0.827 in overall, test and validation set). Conclusions: ML with clinical, anthropometric data and simple blood investigations perform better than FIB-4 for ruling out SF in biopsy-proven Asian NAFLD/MASLD patients.
dc.identifier.citationAlimentary Pharmacology and Therapeutics (2024)
dc.identifier.doi10.1111/apt.17891
dc.identifier.eissn13652036
dc.identifier.issn02692813
dc.identifier.pmid38303507
dc.identifier.scopus2-s2.0-85184258058
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/97185
dc.rights.holderSCOPUS
dc.subjectMedicine
dc.titleMachine learning improves the prediction of significant fibrosis in Asian patients with metabolic dysfunction-associated steatotic liver disease – The Gut and Obesity in Asia (GO-ASIA) Study
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85184258058&origin=inward
oaire.citation.titleAlimentary Pharmacology and Therapeutics
oairecerif.author.affiliationSiriraj Hospital
oairecerif.author.affiliationThe First Affiliated Hospital of Wenzhou Medical University
oairecerif.author.affiliationUniversitas Diponegoro
oairecerif.author.affiliationKing Chulalongkorn Memorial Hospital
oairecerif.author.affiliationNational University of Singapore
oairecerif.author.affiliationAsian Institute of Gastroenterology India
oairecerif.author.affiliationUniversity of Malaya Medical Centre
oairecerif.author.affiliationChinese University of Hong Kong
oairecerif.author.affiliationSchool of Medical Sciences, Universiti Sains Malaysia
oairecerif.author.affiliationPostgraduate Institute of Medical Education &amp; Research, Chandigarh
oairecerif.author.affiliationWeight Loss and Metabolic Surgery Center
oairecerif.author.affiliationNational Hospital Organization Takasaki General Medical Centre
oairecerif.author.affiliationNational Medical Centre

Files

Collections