On exact rate of convergence of row sequences of multipoint Hermite-Padé approximants

dc.contributor.authorBosuwan N.
dc.contributor.correspondenceBosuwan N.
dc.contributor.otherMahidol University
dc.date.accessioned2024-03-19T18:18:13Z
dc.date.available2024-03-19T18:18:13Z
dc.date.issued2024-01-01
dc.description.abstractIn this article, we analyze a rate of attraction of poles of an approximated function to poles of incomplete multipoint Padé approximants and use it to derive a sharp bound on the geometric rate of convergence of multipoint Hermite-Padé approximants to a vector of approximated functions in the Montessus de Ballore theorem when a table of interpolation points is Newtonian.
dc.identifier.citationDemonstratio Mathematica Vol.57 No.1 (2024)
dc.identifier.doi10.1515/dema-2023-0140
dc.identifier.eissn23914661
dc.identifier.scopus2-s2.0-85187247166
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/97686
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.titleOn exact rate of convergence of row sequences of multipoint Hermite-Padé approximants
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85187247166&origin=inward
oaire.citation.issue1
oaire.citation.titleDemonstratio Mathematica
oaire.citation.volume57
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationMinistry of Higher Education, Science, Research and Innovation

Files

Collections