UNFOLDED SEIBERG–WITTEN FLOER SPECTRA, II: RELATIVE INVARIANTS AND THE GLUING THEOREM

dc.contributor.authorKhandhawit T.
dc.contributor.authorLin J.
dc.contributor.authorSasahira H.
dc.contributor.otherMahidol University
dc.date.accessioned2023-07-23T18:01:35Z
dc.date.available2023-07-23T18:01:35Z
dc.date.issued2023-06-01
dc.description.abstractWe use the construction of unfolded Seiberg–Witten Floer spectra of general 3-manifolds defined in our previous paper to extend the notion of relative Bauer–Furuta invariants to general 4-manifolds with boundary. One of the main purposes of this paper is to give a detailed proof of the gluing theorem for the relative invariants.
dc.identifier.citationJournal of Differential Geometry Vol.124 No.2 (2023) , 231-316
dc.identifier.doi10.4310/jdg/1686931602
dc.identifier.eissn1945743X
dc.identifier.issn0022040X
dc.identifier.scopus2-s2.0-85164725202
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/88042
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.titleUNFOLDED SEIBERG–WITTEN FLOER SPECTRA, II: RELATIVE INVARIANTS AND THE GLUING THEOREM
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85164725202&origin=inward
oaire.citation.endPage316
oaire.citation.issue2
oaire.citation.startPage231
oaire.citation.titleJournal of Differential Geometry
oaire.citation.volume124
oairecerif.author.affiliationTsinghua University
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationKyushu University

Files

Collections