THE LEVENBERG-MARQUARDT REGULARIZATION FOR THE BACKWARD HEAT EQUATION WITH FRACTIONAL DERIVATIVE_

dc.contributor.authorPornsawad P.
dc.contributor.authorBöckmann C.
dc.contributor.authorPanitsupakamon W.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-18T17:28:23Z
dc.date.available2023-06-18T17:28:23Z
dc.date.issued2022-01-01
dc.description.abstractThe backward heat problem with time-fractional derivative in Caputo's sense is studied. The inverse problem is severely ill-posed in the case when the fractional order is close to unity. A Levenberg-Marquardt method with a new a posteriori stopping rule is investigated. We show that optimal order can be obtained for the proposed method under a Hölder-type source condition. Numerical examples for one and two dimensions are provided.
dc.identifier.citationElectronic Transactions on Numerical Analysis Vol.57 (2022) , 67-79
dc.identifier.doi10.1553/etna_vol57s67
dc.identifier.eissn10689613
dc.identifier.scopus2-s2.0-85132541308
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/85122
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.titleTHE LEVENBERG-MARQUARDT REGULARIZATION FOR THE BACKWARD HEAT EQUATION WITH FRACTIONAL DERIVATIVE_
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85132541308&origin=inward
oaire.citation.endPage79
oaire.citation.startPage67
oaire.citation.titleElectronic Transactions on Numerical Analysis
oaire.citation.volume57
oairecerif.author.affiliationInstitut für Mathematik der Universität Potsdam
oairecerif.author.affiliationAlfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
oairecerif.author.affiliationSilpakorn University
oairecerif.author.affiliationMahidol University

Files

Collections