Predicting river water height using deep learning-based features

dc.contributor.authorBorwarnginn P.
dc.contributor.authorHaga J.H.
dc.contributor.authorKusakunniran W.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-18T17:00:59Z
dc.date.available2023-06-18T17:00:59Z
dc.date.issued2022-12-01
dc.description.abstractThe paper presents the river height prediction model using real-world historical sensor data such as rainfall, cumulative rainfall, and river water heights. The study evaluates using a Support Vector Regression, a Long Short-Term Memory, and a combination of a Long Short-Term Memory as the feature extraction and a support vector regression. Through experiments, various future predictions are tested, including a few hours or a day. As expected, RNN achieved the lowest error, but it could not capture rapid changes in river height levels. In comparison, the LSTM-SVR can better represent rapid transient changes in the data by using nonlinear kernels.
dc.identifier.citationICT Express Vol.8 No.4 (2022) , 588-594
dc.identifier.doi10.1016/j.icte.2022.03.012
dc.identifier.eissn24059595
dc.identifier.scopus2-s2.0-85127880802
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/84236
dc.rights.holderSCOPUS
dc.subjectComputer Science
dc.titlePredicting river water height using deep learning-based features
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85127880802&origin=inward
oaire.citation.endPage594
oaire.citation.issue4
oaire.citation.startPage588
oaire.citation.titleICT Express
oaire.citation.volume8
oairecerif.author.affiliationNational Institute of Advanced Industrial Science and Technology
oairecerif.author.affiliationMahidol University

Files

Collections