Multipoint Observations and Modeling of the 2021 November 4 Forbush Decrease Using Solar Orbiter, CSES-01, and Ground-based Neutron Monitor Data

dc.contributor.authorBenella S.
dc.contributor.authorLaurenza M.
dc.contributor.authorMartucci M.
dc.contributor.authorRuffolo D.
dc.contributor.authorHu Q.
dc.contributor.authorNicolaou G.
dc.contributor.authorOwen C.J.
dc.contributor.authorStumpo M.
dc.contributor.authorPlainaki C.
dc.contributor.authorPalma F.
dc.contributor.authorPiersanti M.
dc.contributor.authorSorbara M.
dc.contributor.authorSotgiu A.
dc.contributor.authorSparvoli R.
dc.contributor.correspondenceBenella S.
dc.contributor.otherMahidol University
dc.date.accessioned2025-07-01T18:07:56Z
dc.date.available2025-07-01T18:07:56Z
dc.date.issued2025-06-20
dc.description.abstractDuring their propagation in the heliosphere, interplanetary coronal mass ejections (ICMEs) interact with galactic cosmic ray (GCR) particles, modifying their spectrum and driving anisotropies. We analyze the first large Forbush decrease (FD) of Solar Cycle 25 on 2021 November 3-5 by using multipoint in situ observations and neutron monitors to study the association between FD characteristics and ICME. We use the Grad-Shafranov reconstruction to infer the magnetic field configuration of the ICME. We model the neutron monitor response through primary spectrum and anisotropy. The primary spectrum is parameterized with the force-field approximation and the anisotropy is modeled through a spherical harmonic expansion. We optimize the model parameters during the FD by using ground-based observations provided by the worldwide neutron-monitor network. The model’s results are compared with space-based measurements of the differential proton flux measured by the HEPD-01 detector on board the CSES-01 satellite and of the integral counts of both the High-Energy Particle Detector (HEPD-01) and the High Energy Telescope on board the Solar Orbiter. Anisotropy develops during the ICME passage, within the magnetic flux rope (MFR) and is found to be bidirectional. The force-field parameterization of the primary GCR fluxes based on ground-based measurements is found to be in very good agreement with spacecraft observations in the sub-GeV range. The GCR anisotropy obtained by fitting the model to ground-based observations is consistent with interplanetary magnetic field observations. The results suggest that the local magnetic field has a substantial axial component that is aligned to the MFR axis, and determines the GCR anisotropy at the typical neutron monitor energies.
dc.identifier.citationAstrophysical Journal Vol.986 No.2 (2025)
dc.identifier.doi10.3847/1538-4357/add329
dc.identifier.eissn15384357
dc.identifier.issn0004637X
dc.identifier.scopus2-s2.0-105008910935
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/111005
dc.rights.holderSCOPUS
dc.subjectEarth and Planetary Sciences
dc.subjectPhysics and Astronomy
dc.titleMultipoint Observations and Modeling of the 2021 November 4 Forbush Decrease Using Solar Orbiter, CSES-01, and Ground-based Neutron Monitor Data
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105008910935&origin=inward
oaire.citation.issue2
oaire.citation.titleAstrophysical Journal
oaire.citation.volume986
oairecerif.author.affiliationUniversità degli Studi di Roma "Tor Vergata"
oairecerif.author.affiliationUniversità degli Studi dell'Aquila
oairecerif.author.affiliationIstituto Nazionale Di Astrofisica, Rome
oairecerif.author.affiliationFaculty of Science, Mahidol University
oairecerif.author.affiliationMax Planck Institute for Solar System Research
oairecerif.author.affiliationUCL Mullard Space Science Laboratory
oairecerif.author.affiliationIstituto Nazionale di Fisica Nucleare, Sezione di Roma Tor Vergata
oairecerif.author.affiliationAgenzia Spaziale Italiana
oairecerif.author.affiliationDepartment of Space Science

Files

Collections