Mouse Models for Head and Neck Squamous Cell Carcinoma

dc.contributor.authorZhou J.
dc.contributor.authorLiu C.
dc.contributor.authorAmornphimoltham P.
dc.contributor.authorCheong S.C.
dc.contributor.authorGutkind J.S.
dc.contributor.authorChen Q.
dc.contributor.authorWang Z.
dc.contributor.correspondenceZhou J.
dc.contributor.otherMahidol University
dc.date.accessioned2024-05-21T18:19:26Z
dc.date.available2024-05-21T18:19:26Z
dc.date.issued2024-01-01
dc.description.abstractThe prognosis and survival rate of head and neck squamous cell carcinoma (HNSCC) have remained unchanged for years, and the pathogenesis of HNSCC is still not fully understood, necessitating further research. An ideal animal model that accurately replicates the complex microenvironment of HNSCC is urgently needed. Among all the animal models for preclinical cancer research, tumor-bearing mouse models are the best known and widely used due to their high similarity to humans. Currently, mouse models for HNSCC can be broadly categorized into chemical-induced models, genetically engineered mouse models (GEMMs), and transplanted mouse models, each with its distinct advantages and limitations. In chemical-induced models, the carcinogen spontaneously initiates tumor formation through a multistep process. The resemblance of this model to human carcinogenesis renders it an ideal preclinical platform for studying HNSCC initiation and progression from precancerous lesions. The major drawback is that these models are time-consuming and, like human cancer, unpredictable in terms of timing, location, and number of lesions. GEMMs involve transgenic and knockout mice with gene modifications, leading to malignant transformation within a tumor microenvironment that recapitulates tumorigenesis in vivo, including their interaction with the immune system. However, most HNSCC GEMMs exhibit low tumor incidence and limited prognostic significance when translated to clinical studies. Transplanted mouse models are the most widely used in cancer research due to their consistency, availability, and efficiency. Based on the donor and recipient species matching, transplanted mouse models can be divided into xenografts and syngeneic models. In the latter, transplanted cells and host are from the same strain, making syngeneic models relevant to study functional immune system. In this review, we provide a comprehensive summary of the characteristics, establishment methods, and potential applications of these different HNSCC mouse models, aiming to assist researchers in choosing suitable animal models for their research.
dc.identifier.citationJournal of Dental Research (2024)
dc.identifier.doi10.1177/00220345241240997
dc.identifier.eissn15440591
dc.identifier.issn00220345
dc.identifier.scopus2-s2.0-85192848938
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/98400
dc.rights.holderSCOPUS
dc.subjectDentistry
dc.titleMouse Models for Head and Neck Squamous Cell Carcinoma
dc.typeReview
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85192848938&origin=inward
oaire.citation.titleJournal of Dental Research
oairecerif.author.affiliationCancer Research Malaysia
oairecerif.author.affiliationMahidol University, Faculty of Dentistry
oairecerif.author.affiliationMoores Cancer Center
oairecerif.author.affiliationUniversity of California, San Diego
oairecerif.author.affiliationZhejiang University School of Medicine
oairecerif.author.affiliationUniversiti Malaya

Files

Collections