Object Identification and Localization of Visual Explanation for Weapon Detection

dc.contributor.authorHnoohom N.
dc.contributor.authorChotivatunyu P.
dc.contributor.authorYuenyong S.
dc.contributor.authorWongpatikaseree K.
dc.contributor.authorMekruksavanich S.
dc.contributor.authorJitpattanakul A.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-18T17:03:01Z
dc.date.available2023-06-18T17:03:01Z
dc.date.issued2022-01-01
dc.description.abstractWeapon detection is a difficult task that requires accurate identification of weapon objects in images. The object localization approach is mostly used because it combines a gradient with a convolutional layer to create a map of key locations on the image. This paper presents an Eigen-CAM method to localize and detect objects in an image for a Faster Region-based Convolutional Neural Network (Faster R-CNN) residual neural network (ResNet 50) model, giving a visual explanation. The Internet Movie Firearms Database (IMFDB) was used to train a deep learning model with the Faster R-CNN ResNet 50 model of the pre-trained PyTorch framework. Experimental results indicated that the Faster R-CNN ResNet 50 model achieved the highest mAP of 0.497 with 0.5 IoU. The Eigen-CAM method performed effectively for visual image representation.
dc.identifier.citationProceedings - 2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics, RI2C 2022 (2022) , 144-147
dc.identifier.doi10.1109/RI2C56397.2022.9910301
dc.identifier.scopus2-s2.0-85141807513
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/84339
dc.rights.holderSCOPUS
dc.subjectComputer Science
dc.titleObject Identification and Localization of Visual Explanation for Weapon Detection
dc.typeConference Paper
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85141807513&origin=inward
oaire.citation.endPage147
oaire.citation.startPage144
oaire.citation.titleProceedings - 2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics, RI2C 2022
oairecerif.author.affiliationUniversity of Phayao
oairecerif.author.affiliationKing Mongkut's University of Technology North Bangkok
oairecerif.author.affiliationMahidol University

Files

Collections