Predicting the impact of sequence motifs on gene regulation using single-cell data

dc.contributor.authorHepkema J.
dc.contributor.authorLee N.K.
dc.contributor.authorStewart B.J.
dc.contributor.authorRuangroengkulrith S.
dc.contributor.authorCharoensawan V.
dc.contributor.authorClatworthy M.R.
dc.contributor.authorHemberg M.
dc.contributor.otherMahidol University
dc.date.accessioned2023-08-28T18:00:55Z
dc.date.available2023-08-28T18:00:55Z
dc.date.issued2023-12-01
dc.description.abstractThe binding of transcription factors at proximal promoters and distal enhancers is central to gene regulation. Identifying regulatory motifs and quantifying their impact on expression remains challenging. Using a convolutional neural network trained on single-cell data, we infer putative regulatory motifs and cell type-specific importance. Our model, scover, explains 29% of the variance in gene expression in multiple mouse tissues. Applying scover to distal enhancers identified using scATAC-seq from the developing human brain, we identify cell type-specific motif activities in distal enhancers. Scover can identify regulatory motifs and their importance from single-cell data where all parameters and outputs are easily interpretable.
dc.identifier.citationGenome Biology Vol.24 No.1 (2023)
dc.identifier.doi10.1186/s13059-023-03021-9
dc.identifier.eissn1474760X
dc.identifier.issn14747596
dc.identifier.pmid37582793
dc.identifier.scopus2-s2.0-85168067172
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/88815
dc.rights.holderSCOPUS
dc.subjectAgricultural and Biological Sciences
dc.titlePredicting the impact of sequence motifs on gene regulation using single-cell data
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85168067172&origin=inward
oaire.citation.issue1
oaire.citation.titleGenome Biology
oaire.citation.volume24
oairecerif.author.affiliationDepartment of Medicine
oairecerif.author.affiliationWellcome Trust/ Cancer Research UK Gurdon Institute
oairecerif.author.affiliationCambridge University Hospitals NHS Foundation Trust
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationWellcome Sanger Institute
oairecerif.author.affiliationHarvard Medical School

Files

Collections