Predicting the impact of sequence motifs on gene regulation using single-cell data
dc.contributor.author | Hepkema J. | |
dc.contributor.author | Lee N.K. | |
dc.contributor.author | Stewart B.J. | |
dc.contributor.author | Ruangroengkulrith S. | |
dc.contributor.author | Charoensawan V. | |
dc.contributor.author | Clatworthy M.R. | |
dc.contributor.author | Hemberg M. | |
dc.contributor.other | Mahidol University | |
dc.date.accessioned | 2023-08-28T18:00:55Z | |
dc.date.available | 2023-08-28T18:00:55Z | |
dc.date.issued | 2023-12-01 | |
dc.description.abstract | The binding of transcription factors at proximal promoters and distal enhancers is central to gene regulation. Identifying regulatory motifs and quantifying their impact on expression remains challenging. Using a convolutional neural network trained on single-cell data, we infer putative regulatory motifs and cell type-specific importance. Our model, scover, explains 29% of the variance in gene expression in multiple mouse tissues. Applying scover to distal enhancers identified using scATAC-seq from the developing human brain, we identify cell type-specific motif activities in distal enhancers. Scover can identify regulatory motifs and their importance from single-cell data where all parameters and outputs are easily interpretable. | |
dc.identifier.citation | Genome Biology Vol.24 No.1 (2023) | |
dc.identifier.doi | 10.1186/s13059-023-03021-9 | |
dc.identifier.eissn | 1474760X | |
dc.identifier.issn | 14747596 | |
dc.identifier.pmid | 37582793 | |
dc.identifier.scopus | 2-s2.0-85168067172 | |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/88815 | |
dc.rights.holder | SCOPUS | |
dc.subject | Agricultural and Biological Sciences | |
dc.title | Predicting the impact of sequence motifs on gene regulation using single-cell data | |
dc.type | Article | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85168067172&origin=inward | |
oaire.citation.issue | 1 | |
oaire.citation.title | Genome Biology | |
oaire.citation.volume | 24 | |
oairecerif.author.affiliation | Department of Medicine | |
oairecerif.author.affiliation | Wellcome Trust/ Cancer Research UK Gurdon Institute | |
oairecerif.author.affiliation | Cambridge University Hospitals NHS Foundation Trust | |
oairecerif.author.affiliation | Mahidol University | |
oairecerif.author.affiliation | Wellcome Sanger Institute | |
oairecerif.author.affiliation | Harvard Medical School |