Species Identification of the Major Japanese Encephalitis Vectors within the Culex vishnui Subgroup (Diptera: Culicidae) in Thailand Using Geometric Morphometrics and DNA Barcoding
Issued Date
2023-02-01
Resource Type
eISSN
20754450
Scopus ID
2-s2.0-85148703126
Journal Title
Insects
Volume
14
Issue
2
Rights Holder(s)
SCOPUS
Bibliographic Citation
Insects Vol.14 No.2 (2023)
Suggested Citation
Saiwichai T., Laojun S., Chaiphongpachara T., Sumruayphol S. Species Identification of the Major Japanese Encephalitis Vectors within the Culex vishnui Subgroup (Diptera: Culicidae) in Thailand Using Geometric Morphometrics and DNA Barcoding. Insects Vol.14 No.2 (2023). doi:10.3390/insects14020131 Retrieved from: https://repository.li.mahidol.ac.th/handle/123456789/81460
Title
Species Identification of the Major Japanese Encephalitis Vectors within the Culex vishnui Subgroup (Diptera: Culicidae) in Thailand Using Geometric Morphometrics and DNA Barcoding
Other Contributor(s)
Abstract
Japanese encephalitis (JE) is a viral infection of the brain caused by the Japanese encephalitis virus, which spreads globally, particularly in 24 countries of Southeast Asia and the Western Pacific region. In Thailand, the primary vectors of JE are Cx. pseudovishnui, Cx. tritaeniorhynchus, and Cx. vishnui of the Cx. vishnui subgroup. The morphologies of three mosquito species are extremely similar, making identification challenging. Thus, geometric morphometrics (GM) and DNA barcoding were applied for species identification. The results of cross-validation reclassification revealed that the GM technique based on wing shape analysis had relatively high potential for distinguishing Cx. pseudovishnui, Cx. tritaeniorhynchus, and Cx. vishnui (total performance = 88.34% of correctly assigned individuals). While the DNA barcoding yielded excellent results in identifying these Culex species based on the DNA barcode gap (average intraspecific genetic distance = 0.78% ± 0.39% and average interspecific genetic distance = 6.14% ± 0.79%). However, in the absence of the required facilities for DNA barcoding, GM techniques can be employed in conjunction with morphological methods to enhance the reliability of species identification. Based on the results of this study, our approach can help guide efforts to identify members of the Cx. vishnui subgroup, which will be useful for the effective vector control of JE in Thailand.
