The Streptococcus agalactiae LytSR two-component regulatory system promotes vaginal colonization and virulence in vivo

dc.contributor.authorAlQadeeb H.
dc.contributor.authorBaltazar M.
dc.contributor.authorCazares A.
dc.contributor.authorPoonpanichakul T.
dc.contributor.authorKjos M.
dc.contributor.authorFrench N.
dc.contributor.authorKadioglu A.
dc.contributor.authorO'Brien M.
dc.contributor.correspondenceAlQadeeb H.
dc.contributor.otherMahidol University
dc.date.accessioned2024-11-18T18:39:49Z
dc.date.available2024-11-18T18:39:49Z
dc.date.issued2024-11-05
dc.description.abstractStreptococcus agalactiae (or group B Streptococcus, GBS) is a leading cause of neonatal sepsis and meningitis globally. To sense and respond to variations in its environment, GBS possesses multiple two-component regulatory systems (TCSs), such as LytSR. Here, we aimed to investigate the role of LytSR in GBS pathogenicity. We generated an isogenic lytS knockout mutant in a clinical GBS isolate and used a combination of phenotypic in vitro assays and in vivo murine models to investigate the contribution of lytS to the colonization and invasive properties of GBS. Deletion of the lytS gene in the GBS chromosome resulted in significantly higher survival rates in mice during sepsis, accompanied by reduced bacterial loads in blood, lung, spleen, kidney, and brain tissues compared to infection with the wild-type strain. In a mouse model of GBS vaginal colonization, we also observed that the lytS knockout mutant was cleared more readily from the vaginal tract compared to its wild-type counterpart. Interestingly, lower levels of proinflammatory cytokines were found in the serum of mice infected with the lytS mutant. Our results demonstrate that the LytSR TCS plays a key role in GBS tissue invasion and pathogenesis, and persistence of mucosal colonization.IMPORTANCEStreptococcus agalactiae (group B Streptococcus, or GBS) is a common commensal of the female urogenital tract and one of WHO's priority pathogens. The bacterium has evolved mechanisms to adapt and survive in its host, many of which are regulated via two-component signal transduction systems (TCSs); however, the exact contributions of TCSs toward GBS pathogenicity remain largely obscure. We have constructed a TCS lytS-deficient mutant in a CC-17 hypervirulent GBS clinical isolate. Using murine models, we showed that LytSR regulatory system is essential for vaginal colonization via promoting biofilm production. We also observed that lytS deficiency led to significantly attenuated virulence properties and lower levels of proinflammatory cytokines in blood. Our findings are of significant importance in that they unveil a previously unreported role for LytSR in GBS and pave the way toward a better understanding of its ability to transition from an innocuous commensal to a deadly pathogen.
dc.identifier.citationMicrobiology spectrum Vol.12 No.11 (2024) , e0197024
dc.identifier.doi10.1128/spectrum.01970-24
dc.identifier.eissn21650497
dc.identifier.pmid39400158
dc.identifier.scopus2-s2.0-85208772235
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/102089
dc.rights.holderSCOPUS
dc.subjectEnvironmental Science
dc.subjectBiochemistry, Genetics and Molecular Biology
dc.subjectMedicine
dc.subjectImmunology and Microbiology
dc.titleThe Streptococcus agalactiae LytSR two-component regulatory system promotes vaginal colonization and virulence in vivo
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85208772235&origin=inward
oaire.citation.issue11
oaire.citation.titleMicrobiology spectrum
oaire.citation.volume12
oairecerif.author.affiliationPrince Sattam Bin Abdulaziz University
oairecerif.author.affiliationUniversity of Liverpool
oairecerif.author.affiliationFaculty of Medicine Ramathibodi Hospital, Mahidol University
oairecerif.author.affiliationNorges Miljø- og Biovitenskapelige Universitet
oairecerif.author.affiliationParasites and Microbes Programme

Files

Collections