Diagnostic Prediction Model for Tuberculous Meningitis: An Individual Participant Data Meta-Analysis

dc.contributor.authorStadelman-Behar A.M.
dc.contributor.authorTiffin N.
dc.contributor.authorEllis J.
dc.contributor.authorCreswell F.V.
dc.contributor.authorSsebambulidde K.
dc.contributor.authorNuwagira E.
dc.contributor.authorRichards L.
dc.contributor.authorLutje V.
dc.contributor.authorHristea A.
dc.contributor.authorJipa R.E.
dc.contributor.authorVidal J.E.
dc.contributor.authorAzevedo R.G.S.
dc.contributor.authorde Almeida S.M.
dc.contributor.authorKussen G.B.
dc.contributor.authorNogueira K.
dc.contributor.authorGualberto F.A.S.
dc.contributor.authorMetcalf T.
dc.contributor.authorHeemskerk A.D.
dc.contributor.authorDendane T.
dc.contributor.authorKhalid A.
dc.contributor.authorZeggwagh A.A.
dc.contributor.authorBateman K.
dc.contributor.authorSiebert U.
dc.contributor.authorRochau U.
dc.contributor.authorvan Laarhoven A.
dc.contributor.authorvan Crevel R.
dc.contributor.authorGaniem A.R.
dc.contributor.authorDian S.
dc.contributor.authorJarvis J.
dc.contributor.authorDonovan J.
dc.contributor.authorThuong T.N.T.
dc.contributor.authorThwaites G.E.
dc.contributor.authorBahr N.C.
dc.contributor.authorMeya D.B.
dc.contributor.authorBoulware D.R.
dc.contributor.authorBoyles T.H.
dc.contributor.correspondenceStadelman-Behar A.M.
dc.contributor.otherMahidol University
dc.date.accessioned2024-09-13T18:13:24Z
dc.date.available2024-09-13T18:13:24Z
dc.date.issued2024-09-01
dc.description.abstractNo accurate and rapid diagnostic test exists for tuberculous meningitis (TBM), leading to delayed diagnosis. We leveraged data from multiple studies to improve the predictive performance of diagnostic models across different populations, settings, and subgroups to develop a new predictive tool for TBM diagnosis. We conducted a systematic review to analyze eligible datasets with individual-level participant data (IPD). We imputed missing data and explored three approaches: stepwise logistic regression, classification and regression tree (CART), and random forest regression. We evaluated performance using calibration plots and C-statistics via internal-external cross-validation. We included 3,761 individual participants from 14 studies and nine countries. A total of 1,240 (33%) participants had "definite"(30%) or "probable"(3%) TBM by case definition. Important predictive variables included cerebrospinal fluid (CSF) glucose, blood glucose, CSF white cell count, CSF differential, cryptococcal antigen, HIV status, and fever presence. Internal validation showed that performance varied considerably between IPD datasets with C-statistic values between 0.60 and 0.89. In external validation, CART performed the worst (C = 0.82), and logistic regression and random forest had the same accuracy (C = 0.91). We developed a mobile app for TBM clinical prediction that accounted for heterogeneity and improved diagnostic performance (https://tbmcalc.github.io/tbmcalc). Further external validation is needed.
dc.identifier.citationAmerican Journal of Tropical Medicine and Hygiene Vol.111 No.3 (2024) , 546-553
dc.identifier.doi10.4269/ajtmh.23-0789
dc.identifier.eissn14761645
dc.identifier.issn00029637
dc.identifier.pmid39013385
dc.identifier.scopus2-s2.0-85203253090
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/101182
dc.rights.holderSCOPUS
dc.subjectMedicine
dc.subjectImmunology and Microbiology
dc.titleDiagnostic Prediction Model for Tuberculous Meningitis: An Individual Participant Data Meta-Analysis
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85203253090&origin=inward
oaire.citation.endPage553
oaire.citation.issue3
oaire.citation.startPage546
oaire.citation.titleAmerican Journal of Tropical Medicine and Hygiene
oaire.citation.volume111
oairecerif.author.affiliationFaculty of Tropical Medicine, Mahidol University
oairecerif.author.affiliationOxford University Clinical Research Unit
oairecerif.author.affiliationBotswana Harvard AIDS Institute Partnership
oairecerif.author.affiliationBrighton and Sussex Medical School
oairecerif.author.affiliationUniversity of the Witwatersrand Faculty of Health Sciences
oairecerif.author.affiliationMbarara University of Science and Technology
oairecerif.author.affiliationSchool of Medicine, Makerere University College of Health Sciences
oairecerif.author.affiliationMakerere University
oairecerif.author.affiliationUniversitas Padjadjaran
oairecerif.author.affiliationInstituto de Infectologia Emilio Ribas
oairecerif.author.affiliationUniversitatea de Medicina si Farmacie Carol Davila din Bucuresti
oairecerif.author.affiliationHarvard T.H. Chan School of Public Health
oairecerif.author.affiliationUniversity of the Western Cape
oairecerif.author.affiliationLondon School of Hygiene & Tropical Medicine
oairecerif.author.affiliationHelen Joseph Hospital
oairecerif.author.affiliationUniversity of Kansas School of Medicine
oairecerif.author.affiliationUniversity of Washington
oairecerif.author.affiliationUniversidade Federal do Parana
oairecerif.author.affiliationSchool of Public Health
oairecerif.author.affiliationIbn Sina Hospital, Agdal Rabat
oairecerif.author.affiliationNuffield Department of Medicine
oairecerif.author.affiliationUniversity of Minnesota Medical School
oairecerif.author.affiliationUniversidade de São Paulo
oairecerif.author.affiliationGroote Schuur Hospital
oairecerif.author.affiliationHarvard Medical School
oairecerif.author.affiliationRadboud University Medical Center
oairecerif.author.affiliationAmsterdam UMC - University of Amsterdam
oairecerif.author.affiliationUniversity of Cape Town
oairecerif.author.affiliationUMIT TIROL - University for Health Sciences and Technology
oairecerif.author.affiliationMRC/UVRI and LSHTM Uganda Research Unit
oairecerif.author.affiliationCenter for Reference and Training in STD/AIDS CRT DST/AIDS
oairecerif.author.affiliationCochrane Infectious Diseases Group

Files

Collections