IDENTITIES INVOLVING THE TRIBONACCI NUMBERS SQUARED VIA TILING WITH COMBS

dc.contributor.authorAllen M.A.
dc.contributor.otherMahidol University
dc.date.accessioned2023-07-23T18:01:36Z
dc.date.available2023-07-23T18:01:36Z
dc.date.issued2023-02-01
dc.description.abstractThe number of ways to tile an n-board (an n×1 rectangular board) with (2112 ; 1)-, (2112 ; 2)-, and (2112 ; 3)-combs is Tn2+2, where Tn is the nth tribonacci number. A (2112 ; m)comb is a tile composed of m sub-tiles of dimensions 12 × 1 (with the shorter sides always horizontal) separated by gaps of dimensions 21 × 1. We use such tilings to obtain quick combinatorial proofs of identities relating the tribonacci numbers squared to one another, to other combinations of tribonacci numbers, and to the Fibonacci, Narayana’s cows, and Padovan numbers. Most of these identities appear to be new.
dc.identifier.citationFibonacci Quarterly Vol.61 No.1 (2023) , 21-27
dc.identifier.issn00150517
dc.identifier.scopus2-s2.0-85164811579
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/88043
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.titleIDENTITIES INVOLVING THE TRIBONACCI NUMBERS SQUARED VIA TILING WITH COMBS
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85164811579&origin=inward
oaire.citation.endPage27
oaire.citation.issue1
oaire.citation.startPage21
oaire.citation.titleFibonacci Quarterly
oaire.citation.volume61
oairecerif.author.affiliationMahidol University

Files

Collections