Visual Explanations of ResNet 101 for Blister Package Classification

dc.contributor.authorHnoohom N.
dc.contributor.authorMaitrichit N.
dc.contributor.authorWongpatikaseree K.
dc.contributor.authorYuenyong S.
dc.contributor.authorMekruksavanich S.
dc.contributor.authorJitpattanakul A.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-18T17:03:00Z
dc.date.available2023-06-18T17:03:00Z
dc.date.issued2022-01-01
dc.description.abstractThis paper presents an efficient approach to generate visual explanations from a ResNet 101 model for identification of medication. The blister package dataset is used to train a deep learning model built on the PyTorch framework's ResNet 101 pre-trained model. Visual inspections and a quantitative localization benchmark demonstrate that the model approach correctly identifies the critical components of blister packs for medicine identification. A Gradient-weighted Class Activation Mapping (Grad-CAM) method is used to extract the feature map, and then the attention mechanism is utilized to extract the high-level attention maps, that emphasizes the part of the image that is significant to the target class, which can be considered as a visual representation. The experimental results indicated that the Grad-CAM achieved the better visualization and interpretation of ResNet 101 in blister package classification.
dc.identifier.citationProceedings - 2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics, RI2C 2022 (2022) , 148-152
dc.identifier.doi10.1109/RI2C56397.2022.9910317
dc.identifier.scopus2-s2.0-85141810183
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/84338
dc.rights.holderSCOPUS
dc.subjectComputer Science
dc.titleVisual Explanations of ResNet 101 for Blister Package Classification
dc.typeConference Paper
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85141810183&origin=inward
oaire.citation.endPage152
oaire.citation.startPage148
oaire.citation.titleProceedings - 2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics, RI2C 2022
oairecerif.author.affiliationUniversity of Phayao
oairecerif.author.affiliationKing Mongkut's University of Technology North Bangkok
oairecerif.author.affiliationMahidol University

Files

Collections