Unveiling the Molecular Origin of Vapor-Liquid Phase Transition of Bulk and Confined Fluids

dc.contributor.authorJitmitsumphan S.
dc.contributor.authorSripetdee T.
dc.contributor.authorChaimueangchuen T.
dc.contributor.authorTun H.M.
dc.contributor.authorChinkanjanarot S.
dc.contributor.authorKlomkliang N.
dc.contributor.authorSrinives S.
dc.contributor.authorJonglertjunya W.
dc.contributor.authorLing T.C.
dc.contributor.authorPhadungbut P.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-18T16:47:42Z
dc.date.available2023-06-18T16:47:42Z
dc.date.issued2022-05-01
dc.description.abstractAt temperatures below the critical temperature, discontinuities in the isotherms are one critical issue in the design and construction of separation units, affecting the level of confidence for a prediction of vapor–liquid equilibriums and phase transitions. In this work, we study the molecular mechanisms of fluids that involve the vapor–liquid phase transition in bulk and confinement, utilizing grand canonical (GCE) and meso-canonical (MCE) ensembles of the Monte Carlo simulation. Different geometries of the mesopores, including slit, cylindrical, and spherical, were studied. During phase transitions, condensation/evaporation hysteretic isotherms can be detected by GCE simulation, whereas employing MCE simulation allows us to investigate van der Waals (vdW) loop with a vapor spinodal point, intermediate states, and a liquid spinodal point in the isotherms. Depending on the system, the size of the simulation box, and the MCE method, we are able to identify three distinct groups of vdW-type isotherms for the first time: (1) a smooth S-shaped loop, (2) a stepwise S-shaped loop, and (3) a stepwise S-shaped loop with just a vertical segment. The first isotherm type is noticed in the bulk and pores having small box sizes, in which vapor and liquid phases are close and not clearly identified. The second and the third types occurred in the bulk, cylindrical, and slit mesopores with sufficiently large spaces, where vapor and liquid phases are distinctly separated. Results from our studies provide an insight analysis into vapor–liquid phase transitions, elucidating the effect of the confinement of fluid behaviors in a visual manner.
dc.identifier.citationMolecules Vol.27 No.9 (2022)
dc.identifier.doi10.3390/molecules27092656
dc.identifier.eissn14203049
dc.identifier.pmid35566010
dc.identifier.scopus2-s2.0-85129256107
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/83751
dc.rights.holderSCOPUS
dc.subjectBiochemistry, Genetics and Molecular Biology
dc.titleUnveiling the Molecular Origin of Vapor-Liquid Phase Transition of Bulk and Confined Fluids
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85129256107&origin=inward
oaire.citation.issue9
oaire.citation.titleMolecules
oaire.citation.volume27
oairecerif.author.affiliationInstitute of Biological Sciences
oairecerif.author.affiliationSuranaree University of Technology
oairecerif.author.affiliationThailand National Metal and Materials Technology Center
oairecerif.author.affiliationMahidol University

Files

Collections