Mechanism-guided tunnel engineering to increase the efficiency of a flavin-dependent halogenase

dc.contributor.authorPrakinee K.
dc.contributor.authorPhintha A.
dc.contributor.authorVisitsatthawong S.
dc.contributor.authorLawan N.
dc.contributor.authorSucharitakul J.
dc.contributor.authorKantiwiriyawanitch C.
dc.contributor.authorDamborsky J.
dc.contributor.authorChitnumsub P.
dc.contributor.authorvan Pée K.H.
dc.contributor.authorChaiyen P.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-18T16:47:17Z
dc.date.available2023-06-18T16:47:17Z
dc.date.issued2022-06-01
dc.description.abstractAlthough flavin-dependent halogenases (FDHs) are attractive for C–H bond activation, their applications are limited due to low turnover and stability. We have previously shown that leakage of a halogenating intermediate, hypohalous acid (HOX), causes FDHs to be inefficient by lessening halogenation yield. Here we employed a mechanism-guided semi-rational approach to engineer the intermediate transfer tunnel connecting two active sites of tryptophan 6-halogenase (Thal). This Thal-V82I variant generates less HOX leakage and possesses multiple catalytic improvements such as faster halogenation, broader substrate utilization, and greater thermostability and pH tolerance compared with the wildtype Thal. Stopped-flow and rapid quench kinetics analyses indicated that rate constants of halogenation and flavin oxidation are faster for Thal-V82I. Molecular dynamics simulations revealed that the V82I substitution introduces hydrophobic interactions which regulate tunnel dynamics to accommodate HOX and cause rearrangement of water networks, allowing better use of various substrates than the wildtype. Our approach demonstrates that an in-depth understanding of reaction mechanisms is valuable for improving efficiency of FDHs. [Figure not available: see fulltext.]
dc.identifier.citationNature Catalysis Vol.5 No.6 (2022) , 534-544
dc.identifier.doi10.1038/s41929-022-00800-8
dc.identifier.eissn25201158
dc.identifier.scopus2-s2.0-85131548510
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/83719
dc.rights.holderSCOPUS
dc.subjectBiochemistry, Genetics and Molecular Biology
dc.titleMechanism-guided tunnel engineering to increase the efficiency of a flavin-dependent halogenase
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85131548510&origin=inward
oaire.citation.endPage544
oaire.citation.issue6
oaire.citation.startPage534
oaire.citation.titleNature Catalysis
oaire.citation.volume5
oairecerif.author.affiliationVidyasirimedhi Institute of Science and Technology
oairecerif.author.affiliationFakultní Nemocnice u Sv. Anny v Brně
oairecerif.author.affiliationMasaryk University
oairecerif.author.affiliationChulalongkorn University
oairecerif.author.affiliationTechnische Universität Dresden
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationThailand National Center for Genetic Engineering and Biotechnology
oairecerif.author.affiliationChiang Mai University

Files

Collections