Accurate Prediction of Ion Mobility Collision Cross-Section Using Ion’s Polarizability and Molecular Mass with Limited Data

dc.contributor.authorWisanpitayakorn P.
dc.contributor.authorSartyoungkul S.
dc.contributor.authorKurilung A.
dc.contributor.authorSirivatanauksorn Y.
dc.contributor.authorVisessanguan W.
dc.contributor.authorSathirapongsasuti N.
dc.contributor.authorKhoomrung S.
dc.contributor.correspondenceWisanpitayakorn P.
dc.contributor.otherMahidol University
dc.date.accessioned2024-03-12T18:15:26Z
dc.date.available2024-03-12T18:15:26Z
dc.date.issued2023-01-01
dc.description.abstractThe rotationally averaged collision cross-section (CCS) determined by ion mobility-mass spectrometry (IM-MS) facilitates the identification of various biomolecules. Although machine learning (ML) models have recently emerged as a highly accurate approach for predicting CCS values, they rely on large data sets from various instruments, calibrants, and setups, which can introduce additional errors. In this study, we identified and validated that ion’s polarizability and mass-to-charge ratio (m/z) have the most significant predictive power for traveling-wave IM CCS values in relation to other physicochemical properties of ions. Constructed solely based on these two physicochemical properties, our CCS prediction approach demonstrated high accuracy (mean relative error of <3.0%) even when trained with limited data (15 CCS values). Given its ability to excel with limited data, our approach harbors immense potential for constructing a precisely predicted CCS database tailored to each distinct experimental setup. A Python script for CCS prediction using our approach is freely available at https://github.com/MSBSiriraj/SVR_CCSPrediction under the GNU General Public License (GPL) version 3.
dc.identifier.citationJournal of Chemical Information and Modeling (2023)
dc.identifier.doi10.1021/acs.jcim.3c01491
dc.identifier.eissn1549960X
dc.identifier.issn15499596
dc.identifier.scopus2-s2.0-85186399236
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/97526
dc.rights.holderSCOPUS
dc.subjectSocial Sciences
dc.titleAccurate Prediction of Ion Mobility Collision Cross-Section Using Ion’s Polarizability and Molecular Mass with Limited Data
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85186399236&origin=inward
oaire.citation.titleJournal of Chemical Information and Modeling
oairecerif.author.affiliationSiriraj Hospital
oairecerif.author.affiliationFaculty of Medicine Ramathibodi Hospital, Mahidol University
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationThailand National Center for Genetic Engineering and Biotechnology
oairecerif.author.affiliationResearch Network of NANOTEC - MU Ramathibodi on Nanomedicine

Files

Collections