Smoothing spline choice in distributed lag nonlinear models for statistical modeling of count data

dc.contributor.authorNguyen M.T.N.
dc.contributor.authorNguyen V.A.
dc.contributor.authorNguyen M.V.M.
dc.contributor.correspondenceNguyen M.T.N.
dc.contributor.otherMahidol University
dc.date.accessioned2024-09-15T18:12:32Z
dc.date.available2024-09-15T18:12:32Z
dc.date.issued2024-08-27
dc.description.abstractThe distributed lag nonlinear model (DLNM) effectively describes the nonlinear and delayed effects in time-series investigations about some environmental exposures and health outcomes. In DLNM, nonparametric smooth functions are employed to fit the delayed nonlinear relationships between the continuous predictors and the count-dependent variable. This study focused on the cubic B-splines and cubic polynomials as reparameterization tools for these smooth functions. Furthermore, for each scenario, we apply two frameworks of the DLNM, including the classical DLNM and the penalized DLNM. A simulation study is undertaken to evaluate how well these proposed models perform, using criteria such as mean squared errors, mean absolute errors, and AIC. The penalized DLNM with a B-spline basis achieves the best performance in predicting the outcome.
dc.identifier.citationAIP Conference Proceedings Vol.3123 No.1 (2024)
dc.identifier.doi10.1063/5.0224044
dc.identifier.eissn15517616
dc.identifier.issn0094243X
dc.identifier.scopus2-s2.0-85203128333
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/101207
dc.rights.holderSCOPUS
dc.subjectPhysics and Astronomy
dc.titleSmoothing spline choice in distributed lag nonlinear models for statistical modeling of count data
dc.typeConference Paper
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85203128333&origin=inward
oaire.citation.issue1
oaire.citation.titleAIP Conference Proceedings
oaire.citation.volume3123
oairecerif.author.affiliationUniversity of Economics Ho Chi Minh City
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationMinistry of Higher Education, Science, Research and Innovation
oairecerif.author.affiliationUniversity of Medicine and Pharmacy

Files

Collections