Optimization of performance of the KM2A full array using the Crab Nebula<sup>*</sup>
Issued Date
2024-06-01
Resource Type
ISSN
16741137
Scopus ID
2-s2.0-85193954170
Journal Title
Chinese Physics C
Volume
48
Issue
6
Rights Holder(s)
SCOPUS
Bibliographic Citation
Chinese Physics C Vol.48 No.6 (2024)
Suggested Citation
Cao Z., Aharonian F., An Q., Axikegu, Bai Y.X., Bao Y.W., Bastieri D., Bi X.J., Bi Y.J., Cai J.T., Cao Q., Cao W.Y., Cao Z., Chang J., Chang J.F., Chen A.M., Chen E.S., Chen L., Chen L., Chen L., Chen M.J., Chen M.L., Chen Q.H., Chen S.H., Chen T.L., Chen Y., Cheng N., Cheng Y.D., Cui M.Y., Cui S.W., Cui X.H., Cui Y.D., Dai B.Z., Dai H.L., Dai Z.G., Danzengluobu, Volpe D.d., Dong X.Q., Duan K.K., Fan J.H., Fan Y.Z., Fang J., Fang K., Feng C.F., Feng L., Feng S.H., Feng X.T., Feng Y.L., Gabici S., Gao B., Gao C.D., Gao L.Q., Gao Q., Gao W., Gao W.K., Ge M.M., Geng L.S., Giacinti G., Gong G.H., Gou Q.B., Gu M.H., Guo F.L., Guo X.L., Guo Y.Q., Guo Y.Y., Han Y.A., He H.H., He H.N., He J.Y., He X.B., He Y., Heller M., Hor Y.K., Hou B.W., Hou C., Hou X., Hu H.B., Hu Q., Hu S.C., Huang D.H., Huang T.Q., Huang W.J., Huang X.T., Huang X.Y., Huang Y., Huang Z.C., Ji X.L., Jia H.Y., Jia K., Jiang K., Jiang X.W., Jiang Z.J., Jin M., Kang M.M., Ke T., Kuleshov D., Kurinov K., Li B.B., Li C., Li C. Optimization of performance of the KM2A full array using the Crab Nebula<sup>*</sup>. Chinese Physics C Vol.48 No.6 (2024). doi:10.1088/1674-1137/ad2e82 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/98534
Title
Optimization of performance of the KM2A full array using the Crab Nebula<sup>*</sup>
Author(s)
Cao Z.
Aharonian F.
An Q.
Axikegu
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Cai J.T.
Cao Q.
Cao W.Y.
Cao Z.
Chang J.
Chang J.F.
Chen A.M.
Chen E.S.
Chen L.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.H.
Chen T.L.
Chen Y.
Cheng N.
Cheng Y.D.
Cui M.Y.
Cui S.W.
Cui X.H.
Cui Y.D.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
Volpe D.d.
Dong X.Q.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fang J.
Fang K.
Feng C.F.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.L.
Gabici S.
Gao B.
Gao C.D.
Gao L.Q.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Geng L.S.
Giacinti G.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
He H.H.
He H.N.
He J.Y.
He X.B.
He Y.
Heller M.
Hor Y.K.
Hou B.W.
Hou C.
Hou X.
Hu H.B.
Hu Q.
Hu S.C.
Huang D.H.
Huang T.Q.
Huang W.J.
Huang X.T.
Huang X.Y.
Huang Y.
Huang Z.C.
Ji X.L.
Jia H.Y.
Jia K.
Jiang K.
Jiang X.W.
Jiang Z.J.
Jin M.
Kang M.M.
Ke T.
Kuleshov D.
Kurinov K.
Li B.B.
Li C.
Li C.
Aharonian F.
An Q.
Axikegu
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Cai J.T.
Cao Q.
Cao W.Y.
Cao Z.
Chang J.
Chang J.F.
Chen A.M.
Chen E.S.
Chen L.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.H.
Chen T.L.
Chen Y.
Cheng N.
Cheng Y.D.
Cui M.Y.
Cui S.W.
Cui X.H.
Cui Y.D.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
Volpe D.d.
Dong X.Q.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fang J.
Fang K.
Feng C.F.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.L.
Gabici S.
Gao B.
Gao C.D.
Gao L.Q.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Geng L.S.
Giacinti G.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
He H.H.
He H.N.
He J.Y.
He X.B.
He Y.
Heller M.
Hor Y.K.
Hou B.W.
Hou C.
Hou X.
Hu H.B.
Hu Q.
Hu S.C.
Huang D.H.
Huang T.Q.
Huang W.J.
Huang X.T.
Huang X.Y.
Huang Y.
Huang Z.C.
Ji X.L.
Jia H.Y.
Jia K.
Jiang K.
Jiang X.W.
Jiang Z.J.
Jin M.
Kang M.M.
Ke T.
Kuleshov D.
Kurinov K.
Li B.B.
Li C.
Li C.
Author's Affiliation
State Key Laboratory of Particle Detection & Electronics
Yunnan Observatories
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Yunnan University
Institute of High Energy Physics, Chinese Academy of Sciences
University of Chinese Academy of Sciences
IN2P3 - Institut National de Physique Nucléaire et de Physique Des Particules
Guangzhou University
Tsinghua University
Shanghai Jiao Tong University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
Institiúid Ard-Lénn Bhaile Átha Cliath
Sichuan University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
Purple Mountain Observatory Chinese Academy of Sciences
Université de Genève
Hebei Normal University
Tibet University
Moscow Institute of Physics and Technology
TIANFU Cosmic Ray Research Center
Yunnan Observatories
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Yunnan University
Institute of High Energy Physics, Chinese Academy of Sciences
University of Chinese Academy of Sciences
IN2P3 - Institut National de Physique Nucléaire et de Physique Des Particules
Guangzhou University
Tsinghua University
Shanghai Jiao Tong University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
Institiúid Ard-Lénn Bhaile Átha Cliath
Sichuan University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
Purple Mountain Observatory Chinese Academy of Sciences
Université de Genève
Hebei Normal University
Tibet University
Moscow Institute of Physics and Technology
TIANFU Cosmic Ray Research Center
Corresponding Author(s)
Other Contributor(s)
Abstract
The full array of the Large High Altitude Air Shower Observatory (LHAASO) has been in operation since July 2021. For its kilometer-square array (KM2A), we optimized the selection criteria for very high and ultrahigh energy γ-rays using data collected from August 2021 to August 2022, resulting in an improvement in significance of the detection in the Crab Nebula of approximately 15%, compared with that of previous cuts. With the implementation of these new selection criteria, the angular resolution was also significantly improved by approximately 10% at tens of TeV. Other aspects of the full KM2A array performance, such as the pointing error, were also calibrated using the Crab Nebula. The resulting energy spectrum of the Crab Nebula in the energy range of 10-1000 TeV are well fitted by a log-parabola model, which is consistent with the previous results from LHAASO and other experiments.