AGCL: Aspect Graph Construction and Learning for Aspect-level Sentiment Classification

dc.contributor.authorJian Z.
dc.contributor.authorWu D.
dc.contributor.authorWang S.
dc.contributor.authorWang Y.
dc.contributor.authorYao J.
dc.contributor.authorWang M.
dc.contributor.authorWu Q.
dc.contributor.correspondenceJian Z.
dc.contributor.otherMahidol University
dc.date.accessioned2025-03-04T18:11:34Z
dc.date.available2025-03-04T18:11:34Z
dc.date.issued2025-01-01
dc.description.abstractPrior studies on Aspect-level Sentiment Classification (ALSC) emphasize modeling interrelationships among aspects and contexts but overlook the crucial role of aspects themselves as essential domain knowledge. To this end, we propose AGCL, a novel Aspect Graph Construction and Learning method, aimed at furnishing the model with finely tuned aspect information to bolster its task-understanding ability. AGCL's pivotal innovations reside in Aspect Graph Construction (AGC) and Aspect Graph Learning (AGL), where AGC harnesses intrinsic aspect connections to construct the domain aspect graph, and then AGL iteratively updates the introduced aspect graph to enhance its domain expertise, making it more suitable for the ALSC task. Hence, this domain aspect graph can serve as a bridge connecting unseen aspects with seen aspects, thereby enhancing the model's generalization capability. Experiment results on three widely used datasets demonstrate the significance of aspect information for ALSC and highlight AGL's superiority in aspect learning, surpassing state-of-the-art baselines greatly. Code is available at https://github.com/jian-projects/agcl.
dc.identifier.citationProceedings - International Conference on Computational Linguistics, COLING Vol.Part F206484-1 (2025) , 841-854
dc.identifier.issn29512093
dc.identifier.scopus2-s2.0-85218503649
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/105501
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.subjectComputer Science
dc.titleAGCL: Aspect Graph Construction and Learning for Aspect-level Sentiment Classification
dc.typeConference Paper
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85218503649&origin=inward
oaire.citation.endPage854
oaire.citation.startPage841
oaire.citation.titleProceedings - International Conference on Computational Linguistics, COLING
oaire.citation.volumePart F206484-1
oairecerif.author.affiliationXiamen University Malaysia
oairecerif.author.affiliationCollege of Management Mahidol University
oairecerif.author.affiliationXiamen University

Files

Collections