Calcitriol/vitamin D receptor system alleviates PM2.5-induced human bronchial epithelial damage through upregulating mitochondrial bioenergetics in association with regulation of HIF-1α/PGC-1α signaling

dc.contributor.authorChatsirisupachai A.
dc.contributor.authorMuanjumpon P.
dc.contributor.authorJeayeng S.
dc.contributor.authorOnkoksong T.
dc.contributor.authorPluempreecha M.
dc.contributor.authorSoingam T.
dc.contributor.authorPanich U.
dc.contributor.correspondenceChatsirisupachai A.
dc.contributor.otherMahidol University
dc.date.accessioned2024-09-29T18:38:03Z
dc.date.available2024-09-29T18:38:03Z
dc.date.issued2024-10-01
dc.description.abstractPM2.5 exposure causes lung injury by triggering oxidative stress, mitochondrial dysfunction, and modulating HIF-1α signaling. Calcitriol activates VDR, which regulates cellular homeostasis. This study evaluated the protective role of the calcitriol/VDR system in PM2.5-induced damage to BEAS-2B bronchial epithelial cells by reducing oxidative stress, upregulating mitochondrial bioenergetics, and downregulating HIF-1α. We found that the calcitriol/VDR system decreased ROS formation and restored mitochondrial bioenergetics in PM2.5-treated cells. This improvement correlated with reduced HIF-1α nuclear translocation and increased PGC-1α protein and mitochondrial gene expressions. This study is the first to suggest that targeting the calcitriol/VDR system could be a promising pharmacological strategy for mitigating PM2.5-induced lung epithelial damage by promoting mitochondrial bioenergetics and regulating PGC-1α and HIF-1α signaling.
dc.identifier.citationEnvironmental Toxicology and Pharmacology Vol.111 (2024)
dc.identifier.doi10.1016/j.etap.2024.104568
dc.identifier.eissn18727077
dc.identifier.issn13826689
dc.identifier.scopus2-s2.0-85204580457
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/101419
dc.rights.holderSCOPUS
dc.subjectPharmacology, Toxicology and Pharmaceutics
dc.subjectEnvironmental Science
dc.titleCalcitriol/vitamin D receptor system alleviates PM2.5-induced human bronchial epithelial damage through upregulating mitochondrial bioenergetics in association with regulation of HIF-1α/PGC-1α signaling
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85204580457&origin=inward
oaire.citation.titleEnvironmental Toxicology and Pharmacology
oaire.citation.volume111
oairecerif.author.affiliationSiriraj Hospital
oairecerif.author.affiliationWalailak University
oairecerif.author.affiliationChulabhorn Royal Academy

Files

Collections