Meta-analysis of economic evaluation studies: data harmonisation and methodological issues
Issued Date
2022-12-01
Resource Type
eISSN
14726963
Scopus ID
2-s2.0-85124680066
Pubmed ID
35168619
Journal Title
BMC Health Services Research
Volume
22
Issue
1
Rights Holder(s)
SCOPUS
Bibliographic Citation
BMC Health Services Research Vol.22 No.1 (2022)
Suggested Citation
Bagepally B.S., Chaikledkaew U., Chaiyakunapruk N., Attia J., Thakkinstian A. Meta-analysis of economic evaluation studies: data harmonisation and methodological issues. BMC Health Services Research Vol.22 No.1 (2022). doi:10.1186/s12913-022-07595-1 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/85346
Title
Meta-analysis of economic evaluation studies: data harmonisation and methodological issues
Other Contributor(s)
Abstract
Background: In the context of ever-growing health expenditure and limited resources, economic evaluations aid in making evidence-informed policy decisions. Cost-utility analysis (CUA) is often used, and CUA data synthesis is also desirable, but methodological issues are challenged. Hence, we aim to provide a step-by-step process to prepare the CUA data for meta-analysis. Methods: Data harmonisation methods were constructed specifically considering CUA methodology, including inconsistent reports, economic parameters, heterogeneity (i.e., country’s income, time horizon, perspective, modelling approaches, currency, willingness to pay). An incremental net benefit (INB) and its variance were estimated and pooled across studies using a basic meta-analysis by COMER. Results: Five scenarios show how to obtain INB and variance with various reported data: Study reports the mean and variance (Scenario 1) or 95% confidence interval (Scenario 2) of ΔC, ΔE, and ICER for INB/variance calculations. Scenario 3: ΔC, ΔE, and variances are available, but not for the ICER; a Monte Carlo was used to simulate ΔC and ΔE data, variance and covariance can be then estimated leading INB calculation. Scenario-4: Only the CE plane was available, ΔC and ΔE data can be extracted; means of ΔC, ΔE, and variance/covariance can be estimated accordingly, leading to INB/variance estimates. Scenario-5: Only mean cost/outcomes and ICER are available but not for variance and the CE-plane. A variance INB can be borrowed from other studies which are similar characteristics, including country income, ICERs, intervention-comparator, time period, country region, and model type and inputs (i.e., discounting, time horizon). Conclusion: Out data harmonisation and meta-analytic methods should be useful for researchers for the synthesis of economic evidence to aid policymakers in decision making.