FIRST-ORDER AXIOMATISATIONS OF REPRESENTABLE RELATION ALGEBRAS NEED FORMULAS OF UNBOUNDED QUANTIFIER DEPTH

dc.contributor.authorEgrot R.O.B.
dc.contributor.authorHirsch R.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-18T16:40:07Z
dc.date.available2023-06-18T16:40:07Z
dc.date.issued2022-09-29
dc.description.abstractUsing a variation of the rainbow construction and various pebble and colouring games, we prove that RRA, the class of all representable relation algebras, cannot be axiomatised by any first-order relation algebra theory of bounded quantifier depth. We also prove that the class At(RRA) of atom structures of representable, atomic relation algebras cannot be defined by any set of sentences in the language of RA atom structures that uses only a finite number of variables.
dc.identifier.citationJournal of Symbolic Logic Vol.87 No.3 (2022) , 1283-1300
dc.identifier.doi10.1017/jsl.2021.88
dc.identifier.issn00224812
dc.identifier.scopus2-s2.0-85118672511
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/83429
dc.rights.holderSCOPUS
dc.subjectArts and Humanities
dc.titleFIRST-ORDER AXIOMATISATIONS OF REPRESENTABLE RELATION ALGEBRAS NEED FORMULAS OF UNBOUNDED QUANTIFIER DEPTH
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85118672511&origin=inward
oaire.citation.endPage1300
oaire.citation.issue3
oaire.citation.startPage1283
oaire.citation.titleJournal of Symbolic Logic
oaire.citation.volume87
oairecerif.author.affiliationUCL Engineering
oairecerif.author.affiliationMahidol University

Files

Collections