Rational periodic points of x<sup>d</sup>+ c and Fermat-Catalan equations

dc.contributor.authorPanraksa C.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-18T17:27:57Z
dc.date.available2023-06-18T17:27:57Z
dc.date.issued2022-06-01
dc.description.abstractIn this paper, we study rational periodic points of polynomial fd,c(x) = xd + c over the field of rational numbers, where d is an integer greater than two. For period two, we describe periodic points for degrees d = 4, 6. We also demonstrate the nonexistence of rational periodic points of exact period two for d = 2k such that 3|2k - 1 and k has a prime factor greater than three. Moreover, assuming the abc-conjecture, we prove that fd,c has no rational periodic point of exact period greater than one for sufficiently large integer d and c ≠ - 1.
dc.identifier.citationInternational Journal of Number Theory Vol.18 No.5 (2022) , 1111-1129
dc.identifier.doi10.1142/S1793042122500580
dc.identifier.issn17930421
dc.identifier.scopus2-s2.0-85120845821
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/85112
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.titleRational periodic points of x<sup>d</sup>+ c and Fermat-Catalan equations
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85120845821&origin=inward
oaire.citation.endPage1129
oaire.citation.issue5
oaire.citation.startPage1111
oaire.citation.titleInternational Journal of Number Theory
oaire.citation.volume18
oairecerif.author.affiliationMahidol University

Files

Collections