Rational periodic points of x<sup>d</sup>+ c and Fermat-Catalan equations
dc.contributor.author | Panraksa C. | |
dc.contributor.other | Mahidol University | |
dc.date.accessioned | 2023-06-18T17:27:57Z | |
dc.date.available | 2023-06-18T17:27:57Z | |
dc.date.issued | 2022-06-01 | |
dc.description.abstract | In this paper, we study rational periodic points of polynomial fd,c(x) = xd + c over the field of rational numbers, where d is an integer greater than two. For period two, we describe periodic points for degrees d = 4, 6. We also demonstrate the nonexistence of rational periodic points of exact period two for d = 2k such that 3|2k - 1 and k has a prime factor greater than three. Moreover, assuming the abc-conjecture, we prove that fd,c has no rational periodic point of exact period greater than one for sufficiently large integer d and c ≠ - 1. | |
dc.identifier.citation | International Journal of Number Theory Vol.18 No.5 (2022) , 1111-1129 | |
dc.identifier.doi | 10.1142/S1793042122500580 | |
dc.identifier.issn | 17930421 | |
dc.identifier.scopus | 2-s2.0-85120845821 | |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/85112 | |
dc.rights.holder | SCOPUS | |
dc.subject | Mathematics | |
dc.title | Rational periodic points of x<sup>d</sup>+ c and Fermat-Catalan equations | |
dc.type | Article | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85120845821&origin=inward | |
oaire.citation.endPage | 1129 | |
oaire.citation.issue | 5 | |
oaire.citation.startPage | 1111 | |
oaire.citation.title | International Journal of Number Theory | |
oaire.citation.volume | 18 | |
oairecerif.author.affiliation | Mahidol University |