A machine learning for transcutaneous bilirubinometer

dc.contributor.advisorSongpol Ongwattanakul
dc.contributor.advisorChamras Promptmas
dc.contributor.authorNichar Khemtongcharoen
dc.date.accessioned2024-01-10T01:27:14Z
dc.date.available2024-01-10T01:27:14Z
dc.date.copyright2019
dc.date.created2019
dc.date.issued2024
dc.descriptionBiomedical Engineering (Mahidol University 2019)
dc.description.abstractThis research aimed to develop a reliable, non-invasive, and cost-effective prototype of a bilirubinometer for measuring bilirubin concentration. By using the principle of measuring light reflection spectrum from bilirubin sample as the input to a Machine Learning (ML) engine, the bilirubin concentration can be accurately predicted. The proposed bilirubinometer prototype consists of four main parts: light source, fiber probe, light spectrometer, and an Artificial Neural Network (ANN) that are specially engineered for the bilirubinometer construction. The light spectrometer and light source are controlled by a microcontroller platform called Raspberry Pi. In the data collection phase, the bilirubinometer prototype was used to measure the light reflection from the filter paper samples that were dripped in bilirubin solution at concentration 0, 10, 20, 30, 40, and 50 mg/dl. The spectrum of the reflected light was used for training the neural network in order to determine the bilirubin concentration. The multilayer error back-propagation learning method was chosen, and an additional experiment was conducted for neural network optimization. The neural network optimization varied the number of layers and number of neurons in each layer. From the results, the best neural network model has an average error value that predicted deviation from the actual concentration approximately 1.031 mg/dL or around 4.6% and the standard deviation of error value is 1.026.
dc.format.extentxiii, 88 leaves : ill.
dc.format.mimetypeapplication/pdf
dc.identifier.citationThesis (M.Eng. (Biomedical Engineering))--Mahidol University, 2019
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/92139
dc.language.isoeng
dc.publisherMahidol University. Mahidol University Library and Knowledge Center
dc.rightsผลงานนี้เป็นลิขสิทธิ์ของมหาวิทยาลัยมหิดล ขอสงวนไว้สำหรับเพื่อการศึกษาเท่านั้น ต้องอ้างอิงแหล่งที่มา ห้ามดัดแปลงเนื้อหา และห้ามนำไปใช้เพื่อการค้า
dc.rights.holderMahidol University
dc.subjectBilirubin
dc.subjectMachine learning
dc.subjectSpectrometer
dc.subjectSpectrum analysis
dc.titleA machine learning for transcutaneous bilirubinometer
dc.typeMaster Thesis
dcterms.accessRightsopen access
mods.location.urlhttp://mulinet11.li.mahidol.ac.th/e-thesis/2562/547/5837759.pdf
thesis.degree.departmentFaculty of Engineering
thesis.degree.disciplineBiomedical Engineering
thesis.degree.grantorMahidol University
thesis.degree.levelMaster's degree
thesis.degree.nameMaster of Engineering

Files