Accelerating drug discovery and repurposing by combining transcriptional signature connectivity with docking

dc.contributor.authorThorman A.W.
dc.contributor.authorReigle J.
dc.contributor.authorChutipongtanate S.
dc.contributor.authorYang J.
dc.contributor.authorShamsaei B.
dc.contributor.authorPilarczyk M.
dc.contributor.authorFazel-Najafabadi M.
dc.contributor.authorAdamczak R.
dc.contributor.authorKouril M.
dc.contributor.authorBhatnagar S.
dc.contributor.authorHummel S.
dc.contributor.authorNiu W.
dc.contributor.authorMorrow A.L.
dc.contributor.authorCzyzyk-Krzeska M.F.
dc.contributor.authorMcCullumsmith R.
dc.contributor.authorSeibel W.
dc.contributor.authorNassar N.
dc.contributor.authorZheng Y.
dc.contributor.authorHildeman D.A.
dc.contributor.authorMedvedovic M.
dc.contributor.authorHerr A.B.
dc.contributor.authorMeller J.
dc.contributor.correspondenceThorman A.W.
dc.contributor.otherMahidol University
dc.date.accessioned2024-09-10T18:10:43Z
dc.date.available2024-09-10T18:10:43Z
dc.date.issued2024-08-30
dc.description.abstractWe present an in silico approach for drug discovery, dubbed connectivity enhanced structure activity relationship (ceSAR). Building on the landmark LINCS library of transcriptional signatures of drug-like molecules and gene knockdowns, ceSAR combines cheminformatic techniques with signature concordance analysis to connect small molecules and their targets and further assess their biophysical compatibility using molecular docking. Candidate compounds are first ranked in a target structure–independent manner, using chemical similarity to LINCS analogs that exhibit transcriptomic concordance with a target gene knockdown. Top candidates are subsequently rescored using docking simulations and machine learning–based consensus of the two approaches. Using extensive benchmarking, we show that ceSAR greatly reduces false-positive rates, while cutting run times by multiple orders of magnitude and further democratizing drug discovery pipelines. We further demonstrate the utility of ceSAR by identifying and experimentally validating inhibitors of BCL2A1, an important antiapoptotic target in melanoma and preterm birth–associated inflammation.
dc.identifier.citationScience Advances Vol.10 No.35 (2024)
dc.identifier.doi10.1126/sciadv.adj3010
dc.identifier.eissn23752548
dc.identifier.scopus2-s2.0-85203083425
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/101164
dc.rights.holderSCOPUS
dc.subjectMultidisciplinary
dc.titleAccelerating drug discovery and repurposing by combining transcriptional signature connectivity with docking
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85203083425&origin=inward
oaire.citation.issue35
oaire.citation.titleScience Advances
oaire.citation.volume10
oairecerif.author.affiliationCollege of Engineering and Applied Science
oairecerif.author.affiliationCincinnati Children's Hospital Medical Center
oairecerif.author.affiliationUniversity of Cincinnati
oairecerif.author.affiliationUniwersytet Mikołaja Kopernika w Toruniu
oairecerif.author.affiliationUniversity of Cincinnati College of Medicine
oairecerif.author.affiliationCollege of Medicine and Life Sciences
oairecerif.author.affiliationFaculty of Medicine Ramathibodi Hospital, Mahidol University
oairecerif.author.affiliationVA Medical Center

Files

Collections