The arithmetic-periodicity of CUT for C={1,2c}

dc.contributor.authorEllis P.
dc.contributor.authorThanatipanonda T.A.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-18T17:27:44Z
dc.date.available2023-06-18T17:27:44Z
dc.date.issued2022-12-15
dc.description.abstractCUT is a class of partition games played on a finite number of finite piles of tokens. Each version of CUT is specified by a cut-set C⊆N. A legal move consists of selecting one of the piles and partitioning it into d+1 nonempty piles, where d∈C. No tokens are removed from the game. It turns out that the nim-set for any C={1,2c} with c≥2 is arithmetic-periodic, which answers an open question of Dailly et al. (2020). The key step is to show that there is a correspondence between the nim-sets of CUT for C={1,6} and the nim-sets of CUT for C={1,2c},c≥4. The result easily extends to the case of C={1,2c1,2c2,2c3,…}, where c1,c2,…≥2.
dc.identifier.citationDiscrete Applied Mathematics Vol.322 (2022) , 391-403
dc.identifier.doi10.1016/j.dam.2022.08.027
dc.identifier.issn0166218X
dc.identifier.scopus2-s2.0-85144086362
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/85108
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.titleThe arithmetic-periodicity of CUT for C={1,2c}
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85144086362&origin=inward
oaire.citation.endPage403
oaire.citation.startPage391
oaire.citation.titleDiscrete Applied Mathematics
oaire.citation.volume322
oairecerif.author.affiliationDepartment of Mathematics
oairecerif.author.affiliationMahidol University

Files

Collections