The arithmetic-periodicity of CUT for C={1,2c}
dc.contributor.author | Ellis P. | |
dc.contributor.author | Thanatipanonda T.A. | |
dc.contributor.other | Mahidol University | |
dc.date.accessioned | 2023-06-18T17:27:44Z | |
dc.date.available | 2023-06-18T17:27:44Z | |
dc.date.issued | 2022-12-15 | |
dc.description.abstract | CUT is a class of partition games played on a finite number of finite piles of tokens. Each version of CUT is specified by a cut-set C⊆N. A legal move consists of selecting one of the piles and partitioning it into d+1 nonempty piles, where d∈C. No tokens are removed from the game. It turns out that the nim-set for any C={1,2c} with c≥2 is arithmetic-periodic, which answers an open question of Dailly et al. (2020). The key step is to show that there is a correspondence between the nim-sets of CUT for C={1,6} and the nim-sets of CUT for C={1,2c},c≥4. The result easily extends to the case of C={1,2c1,2c2,2c3,…}, where c1,c2,…≥2. | |
dc.identifier.citation | Discrete Applied Mathematics Vol.322 (2022) , 391-403 | |
dc.identifier.doi | 10.1016/j.dam.2022.08.027 | |
dc.identifier.issn | 0166218X | |
dc.identifier.scopus | 2-s2.0-85144086362 | |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/85108 | |
dc.rights.holder | SCOPUS | |
dc.subject | Mathematics | |
dc.title | The arithmetic-periodicity of CUT for C={1,2c} | |
dc.type | Article | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85144086362&origin=inward | |
oaire.citation.endPage | 403 | |
oaire.citation.startPage | 391 | |
oaire.citation.title | Discrete Applied Mathematics | |
oaire.citation.volume | 322 | |
oairecerif.author.affiliation | Department of Mathematics | |
oairecerif.author.affiliation | Mahidol University |