CAYLEY LINEAR–TIME COMPUTABLE GROUPS

dc.contributor.authorKruengthomya P.
dc.contributor.authorBerdinsky D.
dc.contributor.correspondenceKruengthomya P.
dc.contributor.otherMahidol University
dc.date.accessioned2024-04-27T18:12:16Z
dc.date.available2024-04-27T18:12:16Z
dc.date.issued2024-01-01
dc.description.abstractThis paper looks at the class of groups admitting normal forms for which the right multiplication by a group element is computed in linear time on a multi–tape Turing machine. We show that the groups Z2 ≀ Z2, Z2 ≀ F2 and Thompson’s group F have normal forms for which the right multiplication by a group element is computed in linear time on a 2–tape Turing machine. This refines the results previously established by Elder and the authors that these groups are Cayley polynomial–time computable.
dc.identifier.citationGroups, Complexity, Cryptology Vol.15 No.2 (2024) , 1:1-1:22
dc.identifier.doi10.46298/jgcc.2024.15.2.12503
dc.identifier.eissn18696104
dc.identifier.scopus2-s2.0-85190769903
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/98127
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.subjectComputer Science
dc.titleCAYLEY LINEAR–TIME COMPUTABLE GROUPS
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85190769903&origin=inward
oaire.citation.endPage1:22
oaire.citation.issue2
oaire.citation.startPage1:1
oaire.citation.titleGroups, Complexity, Cryptology
oaire.citation.volume15
oairecerif.author.affiliationMahidol University

Files

Collections