CAYLEY LINEAR–TIME COMPUTABLE GROUPS
dc.contributor.author | Kruengthomya P. | |
dc.contributor.author | Berdinsky D. | |
dc.contributor.correspondence | Kruengthomya P. | |
dc.contributor.other | Mahidol University | |
dc.date.accessioned | 2024-04-27T18:12:16Z | |
dc.date.available | 2024-04-27T18:12:16Z | |
dc.date.issued | 2024-01-01 | |
dc.description.abstract | This paper looks at the class of groups admitting normal forms for which the right multiplication by a group element is computed in linear time on a multi–tape Turing machine. We show that the groups Z2 ≀ Z2, Z2 ≀ F2 and Thompson’s group F have normal forms for which the right multiplication by a group element is computed in linear time on a 2–tape Turing machine. This refines the results previously established by Elder and the authors that these groups are Cayley polynomial–time computable. | |
dc.identifier.citation | Groups, Complexity, Cryptology Vol.15 No.2 (2024) , 1:1-1:22 | |
dc.identifier.doi | 10.46298/jgcc.2024.15.2.12503 | |
dc.identifier.eissn | 18696104 | |
dc.identifier.scopus | 2-s2.0-85190769903 | |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/123456789/98127 | |
dc.rights.holder | SCOPUS | |
dc.subject | Mathematics | |
dc.subject | Computer Science | |
dc.title | CAYLEY LINEAR–TIME COMPUTABLE GROUPS | |
dc.type | Article | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85190769903&origin=inward | |
oaire.citation.endPage | 1:22 | |
oaire.citation.issue | 2 | |
oaire.citation.startPage | 1:1 | |
oaire.citation.title | Groups, Complexity, Cryptology | |
oaire.citation.volume | 15 | |
oairecerif.author.affiliation | Mahidol University |