Identification of proton and gamma in LHAASO-KM2A simulation data with deep learning algorithms
dc.contributor.author | Zhang F. | |
dc.contributor.other | Mahidol University | |
dc.date.accessioned | 2023-06-18T18:06:38Z | |
dc.date.available | 2023-06-18T18:06:38Z | |
dc.date.issued | 2022-03-18 | |
dc.description.abstract | Identification of proton and gamma plays an essential role in ultra-high energy gamma-ray astronomy with LHAASO-KM2A. In this work, two neural networks (deep neural networks (DNN) and graph neural networks (GNN)) are applied to distinguish proton and gamma in the LHAASOKM2A simulation data. The receiver operating characteristic (ROC) curves are used to evaluate the quality of the model. Both KM2A-DNN and KM2A-GNN models give higher Area Under Curve (AUC) scores than the traditional baseline model. | |
dc.identifier.citation | Proceedings of Science Vol.395 (2022) | |
dc.identifier.eissn | 18248039 | |
dc.identifier.scopus | 2-s2.0-85123976685 | |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/86591 | |
dc.rights.holder | SCOPUS | |
dc.subject | Multidisciplinary | |
dc.title | Identification of proton and gamma in LHAASO-KM2A simulation data with deep learning algorithms | |
dc.type | Conference Paper | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85123976685&origin=inward | |
oaire.citation.title | Proceedings of Science | |
oaire.citation.volume | 395 | |
oairecerif.author.affiliation | State Key Laboratory of Particle Detection & Electronics | |
oairecerif.author.affiliation | Nanjing University | |
oairecerif.author.affiliation | Shanghai Astronomical Observatory Chinese Academy of Sciences | |
oairecerif.author.affiliation | Shandong University | |
oairecerif.author.affiliation | Wuhan University | |
oairecerif.author.affiliation | Yunnan University | |
oairecerif.author.affiliation | Institute of High Energy Physics Chinese Academy of Science | |
oairecerif.author.affiliation | University of Chinese Academy of Sciences | |
oairecerif.author.affiliation | Guangzhou University | |
oairecerif.author.affiliation | Tsinghua University | |
oairecerif.author.affiliation | Sun Yat-Sen University | |
oairecerif.author.affiliation | University of Science and Technology of China | |
oairecerif.author.affiliation | Zhengzhou University | |
oairecerif.author.affiliation | Institiúid Ard-Lénn Bhaile Átha Cliath | |
oairecerif.author.affiliation | Università degli Studi di Napoli Federico II | |
oairecerif.author.affiliation | Sichuan University | |
oairecerif.author.affiliation | National Astronomical Observatories Chinese Academy of Sciences | |
oairecerif.author.affiliation | Max-Planck-Institut für Kernphysik | |
oairecerif.author.affiliation | Southwest Jiaotong University | |
oairecerif.author.affiliation | Purple Mountain Observatory Chinese Academy of Sciences | |
oairecerif.author.affiliation | Hebei Normal University | |
oairecerif.author.affiliation | Tibet University | |
oairecerif.author.affiliation | Universit'e de Gen'eve | |
oairecerif.author.affiliation | TIANFU Cosmic Ray Research Center |