Statistical information review of CO<inf>2</inf> photocatalytic reduction via bismuth-based photocatalysts using artificial neural network

dc.contributor.authorLimpachanangkul P.
dc.contributor.authorLiu L.
dc.contributor.authorNimmmanterdwong P.
dc.contributor.authorPruksathorn K.
dc.contributor.authorPiumsomboon P.
dc.contributor.authorChalermsinsuwan B.
dc.contributor.correspondenceLimpachanangkul P.
dc.contributor.otherMahidol University
dc.date.accessioned2024-08-09T18:11:49Z
dc.date.available2024-08-09T18:11:49Z
dc.date.issued2024-12-01
dc.description.abstractAn artificial neural network (ANN) was applied to construct the relationship between the CO2 photocatalyst variables. A total of 147 data points from 38 research publications related to photocatalytic CO2 reduction via bismuth-based photocatalysts were used to develop, validate and test the developed model. The most important variable for the yield of the obtained product is irradiation time. The longer irradiation time the higher obtained product yield. Whereas the type of main product and band gap energy had the strongest effect on product yield in the positive and negative directions, respectively, in the Pearson correlation analysis. The ANN model was successfully tested to predict other literature datasets. The ANN model can then be used to estimate the yield of the obtained product, which reflects the CO2 photocatalytic reduction efficiency.
dc.identifier.citationAlexandria Engineering Journal Vol.108 (2024) , 354-363
dc.identifier.doi10.1016/j.aej.2024.07.120
dc.identifier.issn11100168
dc.identifier.scopus2-s2.0-85200231583
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/100383
dc.rights.holderSCOPUS
dc.subjectEngineering
dc.titleStatistical information review of CO<inf>2</inf> photocatalytic reduction via bismuth-based photocatalysts using artificial neural network
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85200231583&origin=inward
oaire.citation.endPage363
oaire.citation.startPage354
oaire.citation.titleAlexandria Engineering Journal
oaire.citation.volume108
oairecerif.author.affiliationCenter of Excellence on Petrochemical and Materials Technology
oairecerif.author.affiliationQingdao Institute of Bioenergy and Bioprocess Technology
oairecerif.author.affiliationChulalongkorn University
oairecerif.author.affiliationMahidol University

Files

Collections