SICAR at RRG2024: GPU Poor’s Guide to Radiology Report Generation

dc.contributor.authorUdomlapsakul K.
dc.contributor.authorPengpun P.
dc.contributor.authorSaengja T.
dc.contributor.authorVeerakanjana K.
dc.contributor.authorTiankanon K.
dc.contributor.authorKhlaisamniang P.
dc.contributor.authorSupholkhan P.
dc.contributor.authorChinkamol A.
dc.contributor.authorAussavavirojekul P.
dc.contributor.authorPhimsiri H.
dc.contributor.authorSripo T.
dc.contributor.authorBoonnag C.
dc.contributor.authorTongdee T.
dc.contributor.authorSiriapisith T.
dc.contributor.authorSaiviroonporn P.
dc.contributor.authorKinchagawat J.
dc.contributor.authorIttichaiwong P.
dc.contributor.correspondenceUdomlapsakul K.
dc.contributor.otherMahidol University
dc.date.accessioned2024-09-28T18:21:29Z
dc.date.available2024-09-28T18:21:29Z
dc.date.issued2024-01-01
dc.description.abstractRadiology report generation (RRG) aims to create free-text radiology reports from clinical imaging. Our solution employs a lightweight multimodal language model (MLLM) enhanced with a two-stage post-processing strategy, utilizing a Large Language Model (LLM) to boost diagnostic accuracy and ensure patient safety. We introduce the "First, Do No Harm" SafetyNet, which incorporates X-Raydar, an advanced X-ray classification model, to cross-verify the model outputs and specifically address false negative errors from the MLLM. This comprehensive approach combines the efficiency of lightweight models with the robustness of thorough post-processing techniques, offering a reliable solution for radiology report generation. Our system achieved fourth place on the F1-Radgraph metric for findings generation in the Radiology Report Generation Shared Task (RRG24).1,..
dc.identifier.citationBioNLP 2024 - 23rd Meeting of the ACL Special Interest Group on Biomedical Natural Language Processing, Proceedings of the Workshop and Shared Tasks (2024) , 635-644
dc.identifier.scopus2-s2.0-85204496103
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/101397
dc.rights.holderSCOPUS
dc.subjectComputer Science
dc.subjectMedicine
dc.subjectEngineering
dc.subjectArts and Humanities
dc.titleSICAR at RRG2024: GPU Poor’s Guide to Radiology Report Generation
dc.typeConference Paper
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85204496103&origin=inward
oaire.citation.endPage644
oaire.citation.startPage635
oaire.citation.titleBioNLP 2024 - 23rd Meeting of the ACL Special Interest Group on Biomedical Natural Language Processing, Proceedings of the Workshop and Shared Tasks
oairecerif.author.affiliationSiriraj Hospital
oairecerif.author.affiliationVidyasirimedhi Institute of Science and Technology
oairecerif.author.affiliationKing's College London
oairecerif.author.affiliationCARIVA Thailand
oairecerif.author.affiliationBangkok Christian College

Files

Collections