SICAR at RRG2024: GPU Poor’s Guide to Radiology Report Generation
dc.contributor.author | Udomlapsakul K. | |
dc.contributor.author | Pengpun P. | |
dc.contributor.author | Saengja T. | |
dc.contributor.author | Veerakanjana K. | |
dc.contributor.author | Tiankanon K. | |
dc.contributor.author | Khlaisamniang P. | |
dc.contributor.author | Supholkhan P. | |
dc.contributor.author | Chinkamol A. | |
dc.contributor.author | Aussavavirojekul P. | |
dc.contributor.author | Phimsiri H. | |
dc.contributor.author | Sripo T. | |
dc.contributor.author | Boonnag C. | |
dc.contributor.author | Tongdee T. | |
dc.contributor.author | Siriapisith T. | |
dc.contributor.author | Saiviroonporn P. | |
dc.contributor.author | Kinchagawat J. | |
dc.contributor.author | Ittichaiwong P. | |
dc.contributor.correspondence | Udomlapsakul K. | |
dc.contributor.other | Mahidol University | |
dc.date.accessioned | 2024-09-28T18:21:29Z | |
dc.date.available | 2024-09-28T18:21:29Z | |
dc.date.issued | 2024-01-01 | |
dc.description.abstract | Radiology report generation (RRG) aims to create free-text radiology reports from clinical imaging. Our solution employs a lightweight multimodal language model (MLLM) enhanced with a two-stage post-processing strategy, utilizing a Large Language Model (LLM) to boost diagnostic accuracy and ensure patient safety. We introduce the "First, Do No Harm" SafetyNet, which incorporates X-Raydar, an advanced X-ray classification model, to cross-verify the model outputs and specifically address false negative errors from the MLLM. This comprehensive approach combines the efficiency of lightweight models with the robustness of thorough post-processing techniques, offering a reliable solution for radiology report generation. Our system achieved fourth place on the F1-Radgraph metric for findings generation in the Radiology Report Generation Shared Task (RRG24).1,.. | |
dc.identifier.citation | BioNLP 2024 - 23rd Meeting of the ACL Special Interest Group on Biomedical Natural Language Processing, Proceedings of the Workshop and Shared Tasks (2024) , 635-644 | |
dc.identifier.scopus | 2-s2.0-85204496103 | |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/101397 | |
dc.rights.holder | SCOPUS | |
dc.subject | Computer Science | |
dc.subject | Medicine | |
dc.subject | Engineering | |
dc.subject | Arts and Humanities | |
dc.title | SICAR at RRG2024: GPU Poor’s Guide to Radiology Report Generation | |
dc.type | Conference Paper | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85204496103&origin=inward | |
oaire.citation.endPage | 644 | |
oaire.citation.startPage | 635 | |
oaire.citation.title | BioNLP 2024 - 23rd Meeting of the ACL Special Interest Group on Biomedical Natural Language Processing, Proceedings of the Workshop and Shared Tasks | |
oairecerif.author.affiliation | Siriraj Hospital | |
oairecerif.author.affiliation | Vidyasirimedhi Institute of Science and Technology | |
oairecerif.author.affiliation | King's College London | |
oairecerif.author.affiliation | CARIVA Thailand | |
oairecerif.author.affiliation | Bangkok Christian College |