Label free electrochemical DNA biosensor for COVID-19 diagnosis
Issued Date
2023-02-01
Resource Type
ISSN
00399140
Scopus ID
2-s2.0-85139597610
Pubmed ID
36228554
Journal Title
Talanta
Volume
253
Rights Holder(s)
SCOPUS
Bibliographic Citation
Talanta Vol.253 (2023)
Suggested Citation
Lomae A., Preechakasedkit P., Hanpanich O., Ozer T., Henry C.S., Maruyama A., Pasomsub E., Phuphuakrat A., Rengpipat S., Vilaivan T., Chailapakul O., Ruecha N., Ngamrojanavanich N. Label free electrochemical DNA biosensor for COVID-19 diagnosis. Talanta Vol.253 (2023). doi:10.1016/j.talanta.2022.123992 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/81753
Title
Label free electrochemical DNA biosensor for COVID-19 diagnosis
Other Contributor(s)
Abstract
The COVID-19 pandemic has significantly increased the development of the development of point-of-care (POC) diagnostic tools because they can serve as useful tools for detecting and controlling spread of the disease. Most current methods require sophisticated laboratory instruments and specialists to provide reliable, cost-effective, specific, and sensitive POC testing for COVID-19 diagnosis. Here, a smartphone-assisted Sensit Smart potentiostat (PalmSens) was integrated with a paper-based electrochemical sensor to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A disposable paper-based device was fabricated, and the working electrode directly modified with a pyrrolidinyl peptide nucleic acid (acpcPNA) as the biological recognition element to capture the target complementary DNA (cDNA). In the presence of the target cDNA, hybridization with acpcPNA probe blocks the redox conversion of a redox reporter, leading to a decrease in electrochemical response correlating to SARS-CoV-2 concentration. Under optimal conditions, a linear range from 0.1 to 200 nM and a detection limit of 1.0 pM were obtained. The PNA-based electrochemical paper-based analytical device (PNA-based ePAD) offers high specificity toward SARS-CoV-2 N gene because of the highly selective PNA-DNA binding. The developed sensor was used for amplification-free SARS-CoV-2 detection in 10 nasopharyngeal swab samples (7 SARS-CoV-2 positive and 3 SARS-CoV-2 negative), giving a 100% agreement result with RT-PCR.