iAMAP-SCM: A Novel Computational Tool for Large-Scale Identification of Antimalarial Peptides Using Estimated Propensity Scores of Dipeptides

Suggested Citation

Charoenkwan P., Schaduangrat N., Lio P., Moni M.A., Chumnanpuen P., Shoombuatong W. iAMAP-SCM: A Novel Computational Tool for Large-Scale Identification of Antimalarial Peptides Using Estimated Propensity Scores of Dipeptides. ACS Omega Vol.7 No.45 (2022) , 41082-41095. 41095. doi:10.1021/acsomega.2c04465 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/84034

Availability

Collections