Deep view of composite SNR CTA1 with LHAASO in γ-rays up to 300 TeV
Issued Date
2025-07-01
Resource Type
ISSN
16747348
eISSN
18691927
Scopus ID
2-s2.0-85217573546
Journal Title
Science China: Physics, Mechanics and Astronomy
Volume
68
Issue
7
Rights Holder(s)
SCOPUS
Bibliographic Citation
Science China: Physics, Mechanics and Astronomy Vol.68 No.7 (2025)
Suggested Citation
Cao Z., Aharonian F., Axikegu, Bai Y.X., Bao Y.W., Bastieri D., Bi X.J., Bi Y.J., Bian W., Bukevich A.V., Cao Q., Cao W.Y., Cao Z., Chang J., Chang J.F., Chen A.M., Chen E.S., Chen H.X., Chen L., Chen L., Chen L., Chen M.J., Chen M.L., Chen Q.H., Chen S., Chen S.H., Chen S.Z., Chen T.L., Chen Y., Cheng N., Cheng Y.D., Chu M.C., Cui M.Y., Cui S.W., Cui X.H., Cui Y.D., Dai B.Z., Dai H.L., Dai Z.G., Danzengluobu, Dong X.Q., Duan K.K., Fan J.H., Fan Y.Z., Fang J., Fang J.H., Fang K., Feng C.F., Feng H., Feng L., Feng S.H., Feng X.T., Feng Y., Feng Y.L., Gabici S., Gao B., Gao C.D., Gao Q., Gao W., Gao W.K., Ge M.M., Ge T.T., Geng L.S., Giacinti G., Gong G.H., Gou Q.B., Gu M.H., Guo F.L., Guo J., Guo X.L., Guo Y.Q., Guo Y.Y., Han Y.A., Hannuksela O.A., Hasan M., He H.H., He H.N., He J.Y., He Y., Hor Y.K., Hou B.W., Hou C., Hou X., Hu H.B., Hu Q., Hu S.C., Huang C., Huang D.H., Huang T.Q., Huang W.J., Huang X.T., Huang X.Y., Huang Y., Huang Y.Y., Ji X.L., Jia H.Y., Jia K., Jiang H.B., Jiang K., Jiang X.W. Deep view of composite SNR CTA1 with LHAASO in γ-rays up to 300 TeV. Science China: Physics, Mechanics and Astronomy Vol.68 No.7 (2025). doi:10.1007/s11433-024-2479-4 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/105355
Title
Deep view of composite SNR CTA1 with LHAASO in γ-rays up to 300 TeV
Author(s)
Cao Z.
Aharonian F.
Axikegu
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Bian W.
Bukevich A.V.
Cao Q.
Cao W.Y.
Cao Z.
Chang J.
Chang J.F.
Chen A.M.
Chen E.S.
Chen H.X.
Chen L.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen Y.
Cheng N.
Cheng Y.D.
Chu M.C.
Cui M.Y.
Cui S.W.
Cui X.H.
Cui Y.D.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
Dong X.Q.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fang J.
Fang J.H.
Fang K.
Feng C.F.
Feng H.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.
Feng Y.L.
Gabici S.
Gao B.
Gao C.D.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Ge T.T.
Geng L.S.
Giacinti G.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo J.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
Hannuksela O.A.
Hasan M.
He H.H.
He H.N.
He J.Y.
He Y.
Hor Y.K.
Hou B.W.
Hou C.
Hou X.
Hu H.B.
Hu Q.
Hu S.C.
Huang C.
Huang D.H.
Huang T.Q.
Huang W.J.
Huang X.T.
Huang X.Y.
Huang Y.
Huang Y.Y.
Ji X.L.
Jia H.Y.
Jia K.
Jiang H.B.
Jiang K.
Jiang X.W.
Aharonian F.
Axikegu
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Bian W.
Bukevich A.V.
Cao Q.
Cao W.Y.
Cao Z.
Chang J.
Chang J.F.
Chen A.M.
Chen E.S.
Chen H.X.
Chen L.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen Y.
Cheng N.
Cheng Y.D.
Chu M.C.
Cui M.Y.
Cui S.W.
Cui X.H.
Cui Y.D.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
Dong X.Q.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fang J.
Fang J.H.
Fang K.
Feng C.F.
Feng H.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.
Feng Y.L.
Gabici S.
Gao B.
Gao C.D.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Ge T.T.
Geng L.S.
Giacinti G.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo J.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
Hannuksela O.A.
Hasan M.
He H.H.
He H.N.
He J.Y.
He Y.
Hor Y.K.
Hou B.W.
Hou C.
Hou X.
Hu H.B.
Hu Q.
Hu S.C.
Huang C.
Huang D.H.
Huang T.Q.
Huang W.J.
Huang X.T.
Huang X.Y.
Huang Y.
Huang Y.Y.
Ji X.L.
Jia H.Y.
Jia K.
Jiang H.B.
Jiang K.
Jiang X.W.
Author's Affiliation
Zhejiang Lab
State Key Laboratory of Particle Detection & Electronics
Université Paris Cité
Yunnan Observatories
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Yunnan University
Institute of High Energy Physics, Chinese Academy of Sciences
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Shanghai Jiao Tong University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
Institiúid Ard-Lénn Bhaile Átha Cliath
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
China Center of Advanced Science and Technology World Laboratory
Purple Mountain Observatory Chinese Academy of Sciences
Chinese University of Hong Kong
Hebei Normal University
Tibet University
TIANFU Cosmic Ray Research Center
State Key Laboratory of Particle Detection & Electronics
Université Paris Cité
Yunnan Observatories
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Yunnan University
Institute of High Energy Physics, Chinese Academy of Sciences
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Shanghai Jiao Tong University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
Institiúid Ard-Lénn Bhaile Átha Cliath
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
China Center of Advanced Science and Technology World Laboratory
Purple Mountain Observatory Chinese Academy of Sciences
Chinese University of Hong Kong
Hebei Normal University
Tibet University
TIANFU Cosmic Ray Research Center
Corresponding Author(s)
Other Contributor(s)
Abstract
The ultra-high-energy (UHE) gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude b ≈ 10.5°. This provides a rare opportunity to spatially resolve the component of the pulsar wind nebula (PWN) and supernova remnant (SNR) at UHE. This paper conducted a dedicated data analysis of 1LHAASO J0007+7303u using the data collected from December 2019 to July 2023. This source is well detected with significances of 21σ and 17σ at 8–100 TeV and >100 TeV, respectively. The corresponding extensions are determined to be 0.23°±0.03° and 0.17°±0.03°. The emission is proposed to originate from the relativistic electrons accelerated within the PWN of PSR J0007+7303. The energy spectrum is well described by a power-law with an exponential cutoff function dN/dE=(42.4±4.1)(E20TeV)−2.31±0.11exp(−E110±25TeV) TeV−1 cm−2 s−1 in the energy range from 8 to 300 TeV, implying a steady-state parent electron spectrum dNe/dEe∝(Ee100TeV)−3.13±0.16exp[(−Ee373±70TeV)2] at energies above ≈ 50 TeV. The cutoff energy of the electron spectrum is roughly equal to the expected current maximum energy of particles accelerated at the PWN terminal shock. Combining the X-ray and gamma-ray emission, the current space-averaged magnetic field can be limited to ≈ 4.5 µG. To satisfy the multi-wavelength spectrum and the γ-ray extensions, the transport of relativistic particles within the PWN is likely dominated by the advection process under the free-expansion phase assumption.