Prescreening MCI and Dementia Using Shank-Mounted IMU during TUG Task

dc.contributor.authorCherachapridi P.
dc.contributor.authorWachiraphan P.
dc.contributor.authorRangpong P.
dc.contributor.authorKiatthaveephong S.
dc.contributor.authorKongwudhikunakorn S.
dc.contributor.authorThanontip K.
dc.contributor.authorPiriyajitakonkij M.
dc.contributor.authorChinkamol A.
dc.contributor.authorLikitvanichkul C.
dc.contributor.authorDujada P.
dc.contributor.authorSenanarong V.
dc.contributor.authorWilaiprasitporn T.
dc.contributor.authorSudhawiyangkul T.
dc.contributor.authorSenanarong V.
dc.contributor.authorWilaiprasitporn T.
dc.contributor.authorSudhawiyangkul T.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-18T17:10:42Z
dc.date.available2023-06-18T17:10:42Z
dc.date.issued2022-12-15
dc.description.abstractDetection of mild cognitive impairment (MCI) and dementia (DEM) is an important topic because, unless it is treated early, MCI can progress to DEM, which is an untreatable disease. This article proposes a timed-up-and-go (TUG) task features analysis and classification of MCI and DEM using inertial measurement units (IMUs) in wearable devices. Our goal is to create a generalized model that can be used for preclinical screening. As a result, rather than classifying only one subtype of DEM, such as Alzheimer's disease (AD) or Parkinson's disease (PD), we classify all subtypes as DEM. We also utilize feature selection methods on features from TUG tasks to optimize the MCI and DEM classification performance. From the results, our generalized model can outperform other works in normal control (NC)-MCI&DEM classification with an accuracy of 86.94% and sensitivity of 97.40%. For NC-DEM classification, the performance of our generalized model is slightly lower than that of specific-subtype models (e.g., NC versus AD). However, our generalized model can outperform the specific-subtype models when using a diverse variety of subtypes. It is a reasonable tradeoff, and it can be a good first step toward a future where the patient can preclinically self-screening the cognitive impairments using wearable devices in free-living environments. This could allow patients to notice the cognitive impairment early on and seek a comprehensive diagnosis from a doctor.
dc.identifier.citationIEEE Sensors Journal Vol.22 No.24 (2022) , 24550-24558
dc.identifier.doi10.1109/JSEN.2022.3220238
dc.identifier.eissn15581748
dc.identifier.issn1530437X
dc.identifier.scopus2-s2.0-85141579442
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/84575
dc.rights.holderSCOPUS
dc.subjectEngineering
dc.titlePrescreening MCI and Dementia Using Shank-Mounted IMU during TUG Task
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85141579442&origin=inward
oaire.citation.endPage24558
oaire.citation.issue24
oaire.citation.startPage24550
oaire.citation.titleIEEE Sensors Journal
oaire.citation.volume22
oairecerif.author.affiliationVidyasirimedhi Institute of Science and Technology
oairecerif.author.affiliationChulalongkorn University
oairecerif.author.affiliationFaculty of Medicine Siriraj Hospital, Mahidol University

Files

Collections