On the Biquadratic Diophantine Equation x4 + 9x2y2 + 27y4 = z2

dc.contributor.authorPanraksa C.
dc.contributor.correspondencePanraksa C.
dc.contributor.otherMahidol University
dc.date.accessioned2025-12-04T18:19:55Z
dc.date.available2025-12-04T18:19:55Z
dc.date.issued2025-01-01
dc.description.abstractWe demonstrate that the biquadratic Diophantine equation x<sup>4</sup> + 9x<sup>2</sup>y<sup>2</sup> + 27y<sup>4</sup> = z<sup>2</sup> admits no non-trivial positive integer solutions. Employing a Fermat-style infinite descent, our proof combines congruences modulo 8 and 9, 3-adic valuations, and three distinct difference-of-squares factorizations to reveal local obstructions, culminating in the descent argument. This approach not only solves the equation but also exemplifies how tailored algebraic identities can unlock solutions to challenging quartic Thue equations.
dc.identifier.citationInternational Journal of Mathematics and Computer Science Vol.20 No.4 (2025) , 1053-1056
dc.identifier.doi10.69793/ijmcs/04.2025/cp
dc.identifier.eissn18140432
dc.identifier.issn18140424
dc.identifier.scopus2-s2.0-105023066537
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/113381
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.subjectComputer Science
dc.titleOn the Biquadratic Diophantine Equation x4 + 9x2y2 + 27y4 = z2
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105023066537&origin=inward
oaire.citation.endPage1056
oaire.citation.issue4
oaire.citation.startPage1053
oaire.citation.titleInternational Journal of Mathematics and Computer Science
oaire.citation.volume20
oairecerif.author.affiliationMahidol University

Files

Collections