Constraining the Cosmic-Ray Energy Based on Observations of Nearby Galaxy Clusters by LHAASO
Issued Date
2025-03-20
Resource Type
ISSN
20418205
eISSN
20418213
Scopus ID
2-s2.0-105000225954
Journal Title
Astrophysical Journal Letters
Volume
982
Issue
1
Rights Holder(s)
SCOPUS
Bibliographic Citation
Astrophysical Journal Letters Vol.982 No.1 (2025)
Suggested Citation
Cao Z., Aharonian F., Bai Y.X., Bao Y.W., Bastieri D., Bi X.J., Bi Y.J., Bian W., Bukevich A.V., Cai C.M., Cao W.Y., Cao Z., Chang J., Chang J.F., Chen A.M., Chen E.S., Chen H.X., Chen L., Chen L., Chen M.J., Chen M.L., Chen Q.H., Chen S., Chen S.H., Chen S.Z., Chen T.L., Chen X.B., Chen X.J., Chen Y., Cheng N., Cheng Y.D., Chu M.C., Cui M.Y., Cui S.W., Cui X.H., Cui Y.D., Dai B.Z., Dai H.L., Dai Z.G., Danzengluobu, Diao Y.X., Dong X.Q., Duan K.K., Fan J.H., Fan Y.Z., Fang J., Fang J.H., Fang K., Feng C.F., Feng H., Feng L., Feng S.H., Feng X.T., Feng Y., Feng Y.L., Gabici S., Gao B., Gao C.D., Gao Q., Gao W., Gao W.K., Ge M.M., Ge T.T., Geng L.S., Giacinti G., Gong G.H., Gou Q.B., Gu M.H., Guo F.L., Guo J., Guo X.L., Guo Y.Q., Guo Y.Y., Han Y.A., Hannuksela O.A., Hasan M., He H.H., He H.N., He J.Y., He X.Y., He Y., Hernández-Cadena S., Hor Y.K., Hou B.W., Hou C., Hou X., Hu H.B., Hu S.C., Huang C., Huang D.H., Huang J.J., Huang T.Q., Huang W.J., Huang X.T., Huang X.Y., Huang Y., Huang Y.Y., Ji X.L., Jia H.Y., Jia K. Constraining the Cosmic-Ray Energy Based on Observations of Nearby Galaxy Clusters by LHAASO. Astrophysical Journal Letters Vol.982 No.1 (2025). doi:10.3847/2041-8213/adb97d Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/108488
Title
Constraining the Cosmic-Ray Energy Based on Observations of Nearby Galaxy Clusters by LHAASO
Author(s)
Cao Z.
Aharonian F.
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Bian W.
Bukevich A.V.
Cai C.M.
Cao W.Y.
Cao Z.
Chang J.
Chang J.F.
Chen A.M.
Chen E.S.
Chen H.X.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen X.B.
Chen X.J.
Chen Y.
Cheng N.
Cheng Y.D.
Chu M.C.
Cui M.Y.
Cui S.W.
Cui X.H.
Cui Y.D.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
Diao Y.X.
Dong X.Q.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fang J.
Fang J.H.
Fang K.
Feng C.F.
Feng H.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.
Feng Y.L.
Gabici S.
Gao B.
Gao C.D.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Ge T.T.
Geng L.S.
Giacinti G.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo J.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
Hannuksela O.A.
Hasan M.
He H.H.
He H.N.
He J.Y.
He X.Y.
He Y.
Hernández-Cadena S.
Hor Y.K.
Hou B.W.
Hou C.
Hou X.
Hu H.B.
Hu S.C.
Huang C.
Huang D.H.
Huang J.J.
Huang T.Q.
Huang W.J.
Huang X.T.
Huang X.Y.
Huang Y.
Huang Y.Y.
Ji X.L.
Jia H.Y.
Jia K.
Aharonian F.
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Bian W.
Bukevich A.V.
Cai C.M.
Cao W.Y.
Cao Z.
Chang J.
Chang J.F.
Chen A.M.
Chen E.S.
Chen H.X.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen X.B.
Chen X.J.
Chen Y.
Cheng N.
Cheng Y.D.
Chu M.C.
Cui M.Y.
Cui S.W.
Cui X.H.
Cui Y.D.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
Diao Y.X.
Dong X.Q.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fang J.
Fang J.H.
Fang K.
Feng C.F.
Feng H.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.
Feng Y.L.
Gabici S.
Gao B.
Gao C.D.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Ge T.T.
Geng L.S.
Giacinti G.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo J.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
Hannuksela O.A.
Hasan M.
He H.H.
He H.N.
He J.Y.
He X.Y.
He Y.
Hernández-Cadena S.
Hor Y.K.
Hou B.W.
Hou C.
Hou X.
Hu H.B.
Hu S.C.
Huang C.
Huang D.H.
Huang J.J.
Huang T.Q.
Huang W.J.
Huang X.T.
Huang X.Y.
Huang Y.
Huang Y.Y.
Ji X.L.
Jia H.Y.
Jia K.
Author's Affiliation
Zhejiang Lab
State Key Laboratory of Particle Detection & Electronics
Université Paris Cité
Yunnan Observatories
Yerevan State University
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Yunnan University
Institute of High Energy Physics, Chinese Academy of Sciences
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Shanghai Jiao Tong University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
China Center of Advanced Science and Technology World Laboratory
Purple Mountain Observatory Chinese Academy of Sciences
Chinese University of Hong Kong
Hebei Normal University
Tibet University
TIANFU Cosmic Ray Research Center
State Key Laboratory of Particle Detection & Electronics
Université Paris Cité
Yunnan Observatories
Yerevan State University
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Yunnan University
Institute of High Energy Physics, Chinese Academy of Sciences
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Shanghai Jiao Tong University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
China Center of Advanced Science and Technology World Laboratory
Purple Mountain Observatory Chinese Academy of Sciences
Chinese University of Hong Kong
Hebei Normal University
Tibet University
TIANFU Cosmic Ray Research Center
Corresponding Author(s)
Other Contributor(s)
Abstract
Galaxy clusters act as reservoirs of high-energy cosmic rays (CRs). As CRs propagate through the intracluster medium, they generate diffuse γ-rays detectable by arrays such as LHAASO. These γ-rays result from proton-proton (pp) collisions of very high-energy cosmic rays or inverse Compton (IC) scattering of positron-electron pairs created by pγ interactions of ultra-high-energy cosmic rays (UHECRs). We analyzed diffuse γ-ray emission from the Coma, Perseus, and Virgo clusters using LHAASO data. Diffuse emission was modeled as a disk of radius R500 for each cluster while accounting for point sources. No significant diffuse emission was detected, yielding 95% confidence level (C.L.) upper limits on the γ-ray flux: for WCDA (1-25 TeV) and KM2A (>25 TeV), less than (49.4, 13.7, 54.0) and (1.34, 1.14, 0.40) × 10−14 ph cm−2 s−1 for Coma, Perseus, and Virgo, respectively. The γ-ray upper limits can be used to derive model-independent constraints on the integral energy of cosmic ray protons above 10 TeV (corresponding to the LHAASO observational range >1 TeV under the pp scenario) to be less than (1.96, 0.59, 0.08) × 1061 erg. The absence of detectable annuli/ring-like structures, indicative of cluster accretion or merging shocks, imposes further constraints on models in which the UHECRs are accelerated in the merging shocks of galaxy clusters.