Scaled Fibonacci-and Lucas-Producing Rational Polynomials

dc.contributor.authorHopkins B.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-22T10:54:47Z
dc.date.available2023-06-22T10:54:47Z
dc.date.issued2022-01-01
dc.description.abstractWe study families of interpolating rational polynomials that produce scaled Fibonacci or Lucas numbers on certain integer values. We use the expansions of these familiesinbinomialpolynomialsandotherformatstoestablishseveralidentitiesinvolv-ing harmonic numbers, binomial coefficients, and various recursively defined sequences.
dc.identifier.citationJournal of Integer Sequences Vol.25 No.3 (2022)
dc.identifier.eissn15307638
dc.identifier.scopus2-s2.0-85127891547
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/87538
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.titleScaled Fibonacci-and Lucas-Producing Rational Polynomials
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85127891547&origin=inward
oaire.citation.issue3
oaire.citation.titleJournal of Integer Sequences
oaire.citation.volume25
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationSaint Peter’s University

Files

Collections