Dietary Supplementation with 20-Hydroxyecdysone Ameliorates Hepatic Steatosis and Reduces White Adipose Tissue Mass in Ovariectomized Rats Fed a High-Fat, High-Fructose Diet
1
Issued Date
2023-07-01
Resource Type
eISSN
22279059
Scopus ID
2-s2.0-85175107542
Journal Title
Biomedicines
Volume
11
Issue
7
Rights Holder(s)
SCOPUS
Bibliographic Citation
Biomedicines Vol.11 No.7 (2023)
Suggested Citation
Buniam J., Chansela P., Weerachayaphorn J., Saengsirisuwan V. Dietary Supplementation with 20-Hydroxyecdysone Ameliorates Hepatic Steatosis and Reduces White Adipose Tissue Mass in Ovariectomized Rats Fed a High-Fat, High-Fructose Diet. Biomedicines Vol.11 No.7 (2023). doi:10.3390/biomedicines11072071 Retrieved from: https://repository.li.mahidol.ac.th/handle/123456789/90907
Title
Dietary Supplementation with 20-Hydroxyecdysone Ameliorates Hepatic Steatosis and Reduces White Adipose Tissue Mass in Ovariectomized Rats Fed a High-Fat, High-Fructose Diet
Author's Affiliation
Other Contributor(s)
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is defined as hepatic steatosis in combination with overweight, diabetes, or other metabolic risk factors. MAFLD affects a significant number of the global population and imposes substantial clinical and economic burdens. With no approved pharmacotherapy, current treatment options are limited to diet and exercise. Therefore, the development of medicines for MAFLD treatment or prevention is necessary. 20-Hydroxyecdysone (20E) is a natural steroid found in edible plants and has been shown to improve metabolism and dyslipidemia. Therefore, it may be useful for MAFLD treatment. Here, we aimed to determine how dietary supplementation with 20E affects fat accumulation and lipogenesis in the liver and adipose tissue of ovariectomized rats fed a high-fat, high-fructose diet (OHFFD). We found that 20E reduced hepatic triglyceride content and visceral fat deposition. 20E increased the phosphorylation of AMP-activated protein kinase and acetyl CoA carboxylase while reducing the expression of fatty acid synthase in the liver and adipose tissue. Additionally, 20E increased hepatic expression of carnitine palmitoyltransferase-1 and reduced adipose expression of sterol regulatory element-binding protein-1. In conclusion, 20E demonstrated beneficial effects in rats with OHFFD-induced MAFLD. These findings suggest that 20E may represent a promising option for MAFLD prevention or treatment.
