Quandle coloring quivers and 2-bridge links
dc.contributor.author | Khandhawit T. | |
dc.contributor.author | Kruaykitanon K. | |
dc.contributor.author | Pongtanapaisan P. | |
dc.contributor.correspondence | Khandhawit T. | |
dc.contributor.other | Mahidol University | |
dc.date.accessioned | 2024-06-21T18:40:01Z | |
dc.date.available | 2024-06-21T18:40:01Z | |
dc.date.issued | 2024-06-01 | |
dc.description.abstract | The quandle coloring quiver was introduced by Cho and Nelson as a categorification of the quandle coloring number. In some cases, it has been shown that the quiver invariant offers more information than other quandle enhancements. In this paper, we compute the quandle coloring quivers of 2-bridge links with respect to the dihedral quandles. | |
dc.identifier.citation | European Journal of Mathematics Vol.10 No.2 (2024) | |
dc.identifier.doi | 10.1007/s40879-024-00748-y | |
dc.identifier.eissn | 21996768 | |
dc.identifier.issn | 2199675X | |
dc.identifier.scopus | 2-s2.0-85195996740 | |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/98892 | |
dc.rights.holder | SCOPUS | |
dc.subject | Mathematics | |
dc.title | Quandle coloring quivers and 2-bridge links | |
dc.type | Article | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85195996740&origin=inward | |
oaire.citation.issue | 2 | |
oaire.citation.title | European Journal of Mathematics | |
oaire.citation.volume | 10 | |
oairecerif.author.affiliation | Mahidol University | |
oairecerif.author.affiliation | Arizona State University |