An Improvement on Exploration Step of Whale Optimization Algorithm with Levy Distribution for Classification Problems

dc.contributor.authorPravesjit S.
dc.contributor.authorKantawong K.
dc.contributor.authorKamkhad N.
dc.contributor.authorSabaiporn S.
dc.contributor.authorMonchanuan J.
dc.contributor.authorJitkongchuen D.
dc.contributor.authorThammano A.
dc.contributor.authorLongpradit P.
dc.contributor.correspondencePravesjit S.
dc.contributor.otherMahidol University
dc.date.accessioned2024-10-24T18:13:29Z
dc.date.available2024-10-24T18:13:29Z
dc.date.issued2024-01-01
dc.description.abstractThe proposed system represents an enhanced movement in search of food of Whale Optimization Algorithm (WOA), based on Levy distribution for image classification of grape leaf disease. In the preprocessing, the proposed system uses convolution kernels to transform images into input data within the range of (0,1). Thereafter, the Levy distribution is incorporated into the WOA model as an exploration search mechanism. A grape leaf dataset from the Plant Village project (www.plantvillage.org), consisting of 4062 labeled images with dimensions of 256 by 256 pixels and divided into four classes -healthy, Black Rot, Black Measles, and Isariopsis leaf spot -is used to evaluate the performance of the proposed system. Experimental results show that the proposed system is better than Visual Geometry Group (VGG16), Gray Level Co-occurrence Matrix (GLCM) with SVM, Low contrast haze reduction-neighborhood component analysis with SVM, and whale optimization algorithm (WOA).
dc.identifier.citation2024 5th International Conference on Big Data Analytics and Practices, IBDAP 2024 (2024) , 130-135
dc.identifier.doi10.1109/IBDAP62940.2024.10689697
dc.identifier.scopus2-s2.0-85206582770
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/101723
dc.rights.holderSCOPUS
dc.subjectComputer Science
dc.subjectDecision Sciences
dc.titleAn Improvement on Exploration Step of Whale Optimization Algorithm with Levy Distribution for Classification Problems
dc.typeConference Paper
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85206582770&origin=inward
oaire.citation.endPage135
oaire.citation.startPage130
oaire.citation.title2024 5th International Conference on Big Data Analytics and Practices, IBDAP 2024
oairecerif.author.affiliationUniversity of Phayao
oairecerif.author.affiliationKing Mongkut's Institute of Technology Ladkrabang
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationBig Data Instutite

Files

Collections