ON Z-SYMMETRIC MODULES

dc.contributor.authorMinh B.P.
dc.contributor.authorSanh N.V.
dc.contributor.correspondenceMinh B.P.
dc.contributor.otherMahidol University
dc.date.accessioned2025-03-12T18:28:59Z
dc.date.available2025-03-12T18:28:59Z
dc.date.issued2025-07-01
dc.description.abstractA ring R is called a left Z-symmetric ring if ab ε Zl(R) implies ba ε Zl(R), where Zl(R) is the set of left zero-divisors. A right Z-symmetric ring is defined similarly, and a Z-symmetric ring is one that is both left and right Z- symmetric. In this paper, we introduce the concept of Z-symmetric modules as a generalization of Z-symmetric ring. Additionally, we introduce the concept of an eversible module as an analogy to eversible rings and prove that every eversible module is also a Z-symmetric module, like in the case of rings.
dc.identifier.citationJournal of Algebraic Systems Vol.13 No.2 (2025) , 119-131
dc.identifier.doi10.22044/jas.2023.13005.1711
dc.identifier.eissn2345511X
dc.identifier.scopus2-s2.0-85219610838
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/106668
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.titleON Z-SYMMETRIC MODULES
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85219610838&origin=inward
oaire.citation.endPage131
oaire.citation.issue2
oaire.citation.startPage119
oaire.citation.titleJournal of Algebraic Systems
oaire.citation.volume13
oairecerif.author.affiliationFaculty of Science, Mahidol University

Files

Collections