ON Z-SYMMETRIC MODULES
dc.contributor.author | Minh B.P. | |
dc.contributor.author | Sanh N.V. | |
dc.contributor.correspondence | Minh B.P. | |
dc.contributor.other | Mahidol University | |
dc.date.accessioned | 2025-03-12T18:28:59Z | |
dc.date.available | 2025-03-12T18:28:59Z | |
dc.date.issued | 2025-07-01 | |
dc.description.abstract | A ring R is called a left Z-symmetric ring if ab ε Zl(R) implies ba ε Zl(R), where Zl(R) is the set of left zero-divisors. A right Z-symmetric ring is defined similarly, and a Z-symmetric ring is one that is both left and right Z- symmetric. In this paper, we introduce the concept of Z-symmetric modules as a generalization of Z-symmetric ring. Additionally, we introduce the concept of an eversible module as an analogy to eversible rings and prove that every eversible module is also a Z-symmetric module, like in the case of rings. | |
dc.identifier.citation | Journal of Algebraic Systems Vol.13 No.2 (2025) , 119-131 | |
dc.identifier.doi | 10.22044/jas.2023.13005.1711 | |
dc.identifier.eissn | 2345511X | |
dc.identifier.scopus | 2-s2.0-85219610838 | |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/123456789/106668 | |
dc.rights.holder | SCOPUS | |
dc.subject | Mathematics | |
dc.title | ON Z-SYMMETRIC MODULES | |
dc.type | Article | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85219610838&origin=inward | |
oaire.citation.endPage | 131 | |
oaire.citation.issue | 2 | |
oaire.citation.startPage | 119 | |
oaire.citation.title | Journal of Algebraic Systems | |
oaire.citation.volume | 13 | |
oairecerif.author.affiliation | Faculty of Science, Mahidol University |