Short tandem repeat polymorphism in the promoter region of cyclophilin 19B drives its transcriptional upregulation and contributes to drug resistance in the malaria parasite Plasmodium falciparum

dc.contributor.authorKucharski M.
dc.contributor.authorWirjanata G.
dc.contributor.authorNayak S.
dc.contributor.authorBoentoro J.
dc.contributor.authorDziekan J.M.
dc.contributor.authorAssisi C.
dc.contributor.authorvan der Pluijm R.W.
dc.contributor.authorMiotto O.
dc.contributor.authorMok S.
dc.contributor.authorDondorp A.M.
dc.contributor.authorBozdech Z.
dc.contributor.otherMahidol University
dc.date.accessioned2023-05-19T07:46:32Z
dc.date.available2023-05-19T07:46:32Z
dc.date.issued2023-01-01
dc.description.abstractResistance of the human malaria parasites, Plasmodium falciparum, to artemisinins is now fully established in Southeast Asia and is gradually emerging in Sub-Saharan Africa. Although nonsynonymous SNPs in the pfk13 Kelch-repeat propeller (KREP) domain are clearly associated with artemisinin resistance, their functional relevance requires cooperation with other genetic factors/alterations of the P. falciparum genome, collectively referred to as genetic background. Here we provide experimental evidence that P. falciparum cyclophilin 19B (PfCYP19B) may represent one putative factor in this genetic background, contributing to artemisinin resistance via its increased expression. We show that overexpression of PfCYP19B in vitro drives limited but significant resistance to not only artemisinin but also piperaquine, an important partner drug in artemisinin-based combination therapies. We showed that PfCYP19B acts as a negative regulator of the integrated stress response (ISR) pathway by modulating levels of phosphorylated eIF2α (eIF2α-P). Curiously, artemisinin and piperaquine affect eIF2α-P in an inverse direction that in both cases can be modulated by PfCYP19B towards resistance. Here we also provide evidence that the upregulation of PfCYP19B in the drug-resistant parasites appears to be maintained by a short tandem repeat (SRT) sequence polymorphism in the gene's promoter region. These results support a model that artemisinin (and other drugs) resistance mechanisms are complex genetic traits being contributed to by altered expression of multiple genes driven by genetic polymorphism at their promoter regions.
dc.identifier.citationPLoS Pathogens Vol.19 No.1 (2023)
dc.identifier.doi10.1371/journal.ppat.1011118
dc.identifier.eissn15537374
dc.identifier.issn15537366
dc.identifier.pmid36696458
dc.identifier.scopus2-s2.0-85147033378
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/81969
dc.rights.holderSCOPUS
dc.subjectImmunology and Microbiology
dc.titleShort tandem repeat polymorphism in the promoter region of cyclophilin 19B drives its transcriptional upregulation and contributes to drug resistance in the malaria parasite Plasmodium falciparum
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85147033378&origin=inward
oaire.citation.issue1
oaire.citation.titlePLoS Pathogens
oaire.citation.volume19
oairecerif.author.affiliationFaculty of Tropical Medicine, Mahidol University
oairecerif.author.affiliationSchool of Biological Sciences
oairecerif.author.affiliationColumbia University Irving Medical Center
oairecerif.author.affiliationNuffield Department of Medicine
oairecerif.author.affiliationUniversiteit van Amsterdam

Files

Collections