Asymptotic modeling of the transient response of nonlinear Kelvin-Voigt viscoelastic thin plates with Norton or Tresca friction by Trotter theory

dc.contributor.authorTerapabkajornded Y.
dc.contributor.authorOrankitjaroen S.
dc.contributor.authorLicht C.
dc.contributor.authorWeller T.
dc.contributor.otherMahidol University
dc.date.accessioned2023-08-28T18:02:05Z
dc.date.available2023-08-28T18:02:05Z
dc.date.issued2023-01-01
dc.description.abstractWe study the dynamic response of a thin viscoelastic plate made of a nonlinear Kelvin-Voigt material in bilateral contact with a rigid body along a part of its lateral boundary with Norton or Tresca friction. We opt for a direct use of the Trotter theory of convergence of semi-groups of operators acting on variable spaces. Depending on the various relative behaviors of the physical and geometrical data of the problem, the asymptotic analysis of its unique solution leads to different limit models whose properties are detailed. We highlight the appearance of an additional state variable that allows us to write these limit systems of equations in the same form as the genuine problem.
dc.identifier.citationApplications of Mathematics (2023)
dc.identifier.doi10.21136/AM.2023.0013-23
dc.identifier.eissn15729109
dc.identifier.issn08627940
dc.identifier.scopus2-s2.0-85168107456
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/88856
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.titleAsymptotic modeling of the transient response of nonlinear Kelvin-Voigt viscoelastic thin plates with Norton or Tresca friction by Trotter theory
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85168107456&origin=inward
oaire.citation.titleApplications of Mathematics
oairecerif.author.affiliationLaboratoire de Mécanique et Génie Civil (LMGC)
oairecerif.author.affiliationMahidol University

Files

Collections