Using the Discrete Lindley Distribution to Deal with Over-dispersion in Count Data

dc.contributor.authorNguyen M.T.N.
dc.contributor.authorNguyen M.V.M.
dc.contributor.authorLe N.T.
dc.contributor.otherMahidol University
dc.date.accessioned2023-08-09T18:01:30Z
dc.date.available2023-08-09T18:01:30Z
dc.date.issued2023-07-18
dc.description.abstractCount data in environmental epidemiology or ecology often display substantial over-dispersion, and failing to account for the over-dispersion could result in biased estimates and underestimated standard errors. This study develops a new generalized linear model family to model over-dispersed count data by assuming that the response variable follows the discrete Lindley distribution. The iterative weighted least square is developed to fit the model. Furthermore, asymptotic properties of estimators, the goodness of fit statistics are also derived. Lastly, some simulation studies and empirical data applications are carried out, and the generalized discrete Lindley linear model shows a better performance than the Poisson distribution model.
dc.identifier.citationAustrian Journal of Statistics Vol.52 No.3 (2023) , 96-113
dc.identifier.doi10.17713/ajs.v52i3.1465
dc.identifier.issn1026597X
dc.identifier.scopus2-s2.0-85165905084
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/88219
dc.rights.holderSCOPUS
dc.subjectDecision Sciences
dc.titleUsing the Discrete Lindley Distribution to Deal with Over-dispersion in Count Data
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85165905084&origin=inward
oaire.citation.endPage113
oaire.citation.issue3
oaire.citation.startPage96
oaire.citation.titleAustrian Journal of Statistics
oaire.citation.volume52
oairecerif.author.affiliationDuy Tan University
oairecerif.author.affiliationMahidol University

Files

Collections